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SUMMARY

This thesis introduces the portfolio framework for optimization with multiple objec-

tives. A portfolio is a small set of solutions that approximately optimizes every objective

under consideration. This approach recognizes the inherent plurality of objectives and pro-

vides a structured way to navigate competing goals. Instead of insisting on a single ‘best’

solution, portfolios offer a small number of high-quality solutions that together span the

space of possible preferences. This work discusses the theoretical foundations, algorith-

mic techniques, and practical applications of this framework across various problems in

machine learning and combinatorial optimization.
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CHAPTER 1

INTRODUCTION

Optimization formalizes the task of choosing the ‘best’ decision under constraints. Discrete

optimization, in particular, captures many of the central challenges of computer science –

from foundational questions in algorithm design and complexity theory to applications in

machine learning, resource allocation, and scientific modeling. Much of the literature on

optimization agrees on the importance of translating the underlying goal of the problem

into a mathematical objective function. Still, it assumes that this task has been carried out

and often begins with a well-specified objective function.

This thesis studies portfolios for optimization problems, which are small sets of so-

lutions that (approximately) optimize a large class of objective functions. There are at

least three reasons to study how an optimization problem behaves as the objective function

changes:

First, the task of translating the goals of the underlying problem into the objective

function of the optimization involves making modeling choices. It is sometimes preferable

for these choices to be made by the policy-maker (such as an elected representative or

an organization official) rather than the algorithm designer. Just as importantly, the policy-

maker should be able to understand how different modeling choices affect the outcomes. In

practice, neither of these may hold. For example, consider a facility location problem where

we seek to open some new pharmacies in an area while prioritizing poorer residents. This

can be modeled as a standard facility location problem with an objective function where

distances traveled by poorer residents get a higher weight. Both the choice of this form

of objective function and the choice of the appropriate weight are modeling choices, often

made by the algorithm designer. Understanding how the optimization problem behaves for

different objectives helps understand the impact of these modeling choices and potentially
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make decisions robust to these choices.

The second reason to study optimization problems with different objective functions is

that different stakeholders often disagree on the goals of the optimization. In the facility

location example, different residents might disagree on what is fair1, and their notions of

fairness will then translate into different objectives (even if they all agree on the modeling

choices). This is particularly pertinent given the line of work that has established the in-

compatibility of different notions of fairness in various settings like resource allocation [8,

9] and machine learning [10, 11]. Similarly, the goals of efficiency and fairness are often at

odds with each other in many settings, and the right tradeoff between these is unclear.

Finally, understanding how the (approximate) optimum of an optimization problem

changes with a change in the objective gives insights into the structural and algorithmic

aspects of the problem. For example, we could ask what algorithms for classical facility

location problems2 generalize to the fair version of the problem described above, and how

the optimum solution changes as we change the weight on distances traveled by poorer

residents. More broadly, such questions connect to fundamental algorithmic and structural

problems: (1) robustness – how sensitive is the optimal solution to changes in the objective,

and how broadly do existing algorithms generalize? (2) approximation – to what extent

does a solution optimal for one objective approximate another objective? and (3) covering

– what is the smallest collection of solutions required so that every objective has a near-

optimal representative?

1.1 Portfolios

These challenges motivate a framework that does not insist on a single solution but instead

provides a structured set of options. The central idea of this thesis is such a framework:

portfolios.
1As has been widely discussed in philosophy [1, 2, 3], economics [4, 5, 6], and more recently computer

science [7, 8].
2Classical facility location problems typically minimize some combination of user distances and facility
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Figure 1.1: A portfolio of four solutions for opening ≤ 5 new pharmacies in South Car-
olina, USA to reduce ‘medical deserts’, which are poor regions that are far away from their
nearest pharmacy. The left-most solution prioritizes equity, the right-most prioritizes effi-
ciency, and the middle two represent intermediate trade-offs (see Chapter 3 for details).

Concretely, we develop methods that generate a portfolio of options satisfying two guar-

antees: (1) there is some option in this portfolio, no matter how the goals of optimization

are balanced, and (2) there are not too many portfolio options. Formally, instead of select-

ing a single composite objective function that explicitly balances these various objectives,

we develop techniques to provide a small set of “good enough” solutions that provably ap-

proximate any function from a given set of potential objectives of interest. For example,

Figure 1.1 provides a portfolio of four options for opening five new pharmacies in the state

of South Carolina, USA. Different options are obtained by optimizing objectives that in-

terpolate between (some notion of) efficiency and equity, and prioritize different regions.

Figure 1.2 gives another example.

Traditional approaches from multiobjective optimization [14, 15, 16, 17, 18, 19] typi-

cally fix specific notions of efficiency and equity and then study solutions along their Pareto

frontier. This perspective has been fruitful, but it often does not provide approximation

guarantees for an arbitrary (possibly infinite) class of objectives, nor does it analyze the

trade-off between solution quality and the number of solutions one must retain (typically

exponential in the problem dimension). In contrast, our framework of solution portfolios

directly addresses both issues by asking for a small set of solutions that simultaneously

costs [12, 13].
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approximate all objectives of interest in a given class of objectives.

Intuitively, a portfolio is like a ‘menu’ of candidate solutions: no matter which objective

you care about, at least one item on the menu will perform nearly as well as the best possible

solution for that objective. We now formalize this intuition:

Definition 1.1 (Minimization Portfolio). Given a minimization problem with feasible solu-

tions D, a (potentially infinite) class C of objective functions and a desired approximation

α ≥ 1, a set X ⊆ D is called an α-approximate portfolio if for each h ∈ C, there exists

x ∈ X that is an α-approximate solution to h, i.e., h(x) ≤ αminy∈D h(y).

For maximization problems, these are defined completely analogously:

Definition 1.2 (Maximization Portfolio). Given a maximization problem with feasible solu-

tions D, a (potentially infinite) class C of objective functions and a desired approximation

α ∈ (0, 1], a setX ⊆ D is called an α-approximate portfolio if for each h ∈ C, there exists

x ∈ X that is an α-approximate solution to h, i.e., h(x) ≥ αmaxy∈D h(y).

Small portfolios are important because they are practically useful: a decision-maker

can only evaluate and compare a handful of solutions. The approximation factor measures

the quality of the portfolio – poorer approximations imply that at least some objectives

are poorly optimized by the portfolio. When both small size and good approximation are

achieved, portfolios are not only usable in practice but also interpretable and theoretically

robust.

If the portfolio size is restricted to 1, then this reduces to asking for a simultaneous

approximation across all objectives (e.g., see [8, 9]), that is, a single solution that works

reasonably well for all objectives at once. However, good simultaneous approximations

rarely exist, and it can be challenging to find them efficiently (both in theory and practice).

For example, in facility location problems, no single solution may minimize the average

person/group’s distance (objective 1) as well as the most distant person/group’s distance

(objective 2). In scheduling problems, no single schedule may minimize the load on the
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Figure 1.2: An example of a portfolio of three policies for the healthcare resource allo-
cation problem considered in Chapter 6, modeled through reinforcement learning. The
bar plots show total ‘score’ induced by each policy across different education (top) and
age (bottom) brackets. A ‘score’ of 1.0 corresponds to a baseline policy (not shown) used
for comparison. The three policies impact various education and age brackets differently,
offering a diverse set of options for decision-makers. Policy 1 favours the less educated
brackets, as well as the very young and older brackets. Policy 2 also favours the less ed-
ucated population, but is more balanced. Policy 3 is the most balanced across education
brackets.

average machine (objective 1) as well as the load on the most loaded machine (objective 2).

In a resource allocation problem (modeled, for example, using reinforcement learning), no

single solution may maximize the average person/group’s utility (objective 1) as well as the

minimum utility (objective 2) of a person/group. As we consider more than 2 objectives,

the number of solutions required to satisfy them all (up to given approximation α) only

grows.

That is, for various problems, as the set C of objectives grows larger, small portfolios

may not even exist. Further, even for a given class C of objectives, it is not clear what

the minimum size of an α-approximate portfolio needed to achieve a given approximation

factor is. Larger portfolios are needed for better approximations, and the goal is to keep the

size |X| of the portfolio small. This thesis explores portfolios for various combinatorial and

machine learning settings, aiming to understand the trade-offs between portfolio size |X|

and approximation α for different classes C of objectives and domains D. See Figure 1.3

for an illustrative example.

Similar to classical (single-objective) optimization, the existence of an α-approximate
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Figure 1.3: An example illustrating how different objective functions can yield distinct
optimal solutions. We consider a scheduling problem with d = 3 machines with process-
ing times p0 = 5.5, p1 = 3, and p2 = 2, and n = 9 identical jobs. The load vector
x = (x0, x1, x2) denotes the total load on each machine. The six subfigures correspond to
minimizing: (1) the total load

∑
i xi, (2) the maximum load maxi xi, (3) a convex com-

bination 0.3
∑

i xi + 0.7maxi xi, (4) the L2 norm ∥x∥2, (5) the sum of the two highest
loads, and (6) 2 × highest load + second highest load + least load, i.e., the ordered norm
with weights w = (2, 1, 1) (see Chapter 2). These six objectives yield four distinct optimal
schedules (a, b, d, f), implying that an optimal (α = 1) portfolio for these objectives must
have size 4. The two solutions highlighted in blue (a, b) form a 1.1-approximate portfolio
for all 6 objectives. The single schedule (b) minimizing maxi xi forms a 1.4-approximate
portfolio for these 6 objectives.
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portfolio does not automatically imply that we can find one efficiently. This leads to two

distinct questions: (1) What is the minimum size of an α-approximate portfolio, regardless

of computation? (2) What is the minimum size of an α-approximate portfolio that can be

efficiently constructed? A central goal of this thesis is to extend the analysis of classical

approximation algorithms to this portfolio setting. Whenever possible, our existence re-

sults will be constructive, yielding (typically polynomial-time) algorithms for computing

portfolios. However, we will also note examples (see Chapter 5) of gaps between answers

to these questions.

Chapter 3 through Chapter 5 discuss portfolios for minimization problems, while Chap-

ter 6 discusses portfolios for maximization problems. Chapter 7 discusses portfolios of

algorithms in the Online Convex Optimization (OCO) setting.

Setting. Throughout Chapter 3 to Chapter 6, we will work with a set or domain D of

feasible solutions to an optimization problem. For example, D could be the set of all

possible combinations of open facilities in a facility location or clustering problem, the set

of all schedules in a scheduling problem, or the set of all feasible policies in a reinforcement

learning problem. This set is often specified implicitly, and is infinite or exponential in the

input size.

We assume that the outcome for stakeholder i ∈ [d] can be represented as a function

hi : D → R≥0 of the chosen solution. While simple, this assumption captures many

canonical problems. That is, we will be given d base objective functions h1, . . . , hd : D →

R≥0 over D. For instance, in the facility location problem, hi could represent the mean

distance to open facilities travelled by the population in the ith group for i ∈ [d]. In a

scheduling problem with d machines, hi could represent the load on machine i ∈ [d]. In

a reinforcement learning problem, hi could represent the reward accumulated by the ith

stakeholder.

In Chapter 3 to Chapter 5, these base objectives will represent some notion of cost paid
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by the stakeholders (as in the facility location and scheduling examples), so that we seek

to minimize these. In Chapter 6, these base objectives will represent some notion of utility

obtained by the stakeholders (as in the reinforcement learning example), so that we seek to

maximize these. It is a priori unclear which stakeholder or objective should be prioritized,

or if a single stakeholder should be prioritized at all.

1.2 Contributions

This section outlines our main contributions in this thesis. In summary, we formally define

minimization and maximization portfolios and establish basic properties. We (1) bound

the portfolio sizes and (2) study the trade-off between portfolio size and approximation

quality for several problems. Through various applications, we show that small portfolios

are practically useful. We also design new approximation and online algorithms across a

variety of combinatorial and learning problems.3

Canonical classes of objectives. We provide general bounds on portfolio sizes for canon-

ical classes of objective functions, for arbitrary feasible sets D of solutions. These classes

of functions model different ways of balancing stakeholder preferences.

1. Conic (positive weighted and linear) combinations of the base objective functions,

which represent a natural way to balance the stakeholder preferences in different

ways. Under mild technical assumptions, we provide an exponential (in d) upper

bound on the portfolio size, and also show that the exponential size is unavoidable.

2. Function classes that interpolate monotonically between equity objective maxi∈[d] hi

and efficiency objective
∑

i∈[d] hi, such as Lp norms and top-ℓ norms. We give a

logarithmic (in d) upper bound on the portfolio size and show that it is tight up to

constant factors.
3See Chapter 2 for formal problem definitions.
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3. Richer classes of objectives that capture more nuanced trade-offs, such as ordered

and symmetric monotonic norms. Ordered norms provide a way to assign systemat-

ically higher weights to larger costs, interpolating between equity and efficiency in

multiple ways. Building on previous work, we discuss upper and lower bounds on

portfolio sizes.

4. p-mean objectives that generalize classical welfare measures (utilitarian, egalitarian,

Nash) in the maximization setting. We give an upper bound on portfolio sizes.

Canonical optimization problems. As concrete applications of the portfolio framework,

we develop portfolios for various canonical optimization problems, including:

1. We introduce the Fair Subsidized Facility Location (FSFL) problem, which gen-

eralizes classical uncapacitated facility location and k-clustering problems. FSFL

addresses the fundamental tension between profitability and access: it models how

a central planner might strategically place pharmacies to ensure coverage in under-

served areas, allowing some facilities to operate with losses subsidized by more prof-

itable locations. We provide a new approximation algorithm and portfolios for Lp

norms for FSFL. Our approximation algorithm generalizes previously known tech-

niques and introduces a new combinatorial rounding subroutine.

2. For various scheduling and covering problems, we give portfolios for ordered and

symmetric monotonic norms with size polylogarithmic in d, improving over the gen-

eral polynomial in d bound [20]. Our algorithm uses a new primal-dual counting

technique, wherein we count objects in a suitable dual space to bound the size of the

portfolio in the primal space.

For the specific problem of balancing machine loads with identical jobs, we provide

nearly matching upper and lower bounds on portfolio sizes for all approximation

factors α > 4, thus characterizing the trade-off between portfolio size and approxi-
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mation factor for this problem.

3. We apply our results for p-mean functions to Multi-Objective Reinforcement Learn-

ing (MORL). Unlike traditional MDPs that give a unique reward for each transition,

MORL allows for a vector of rewards for each transition – usually representing the

gains of different stakeholders. These multiple reward functions can be aggregated

in different ways. We use the p-means of these rewards for various p ≤ 1 to ag-

gregate these, and each choice of p results in a different optimal policy. We obtain

portfolios of policies to (approximately) optimize all possible aggregations (i.e., for

all p-means).

Simultaneous approximations. Conversely, we develop an algorithmic framework, called

IterativeOrdering, which yields new and improved simultaneous approximations

(portfolios of size 1) for several combinatorial optimization problems, including job com-

pletion time minimization in scheduling and the traveling salesman problems.

Portfolios of algorithms. Moving beyond solution sets, we explore portfolios of algo-

rithms in the Online Convex Optimization (OCO) framework. Unlike the usual portfolio

setting where we seek to optimize multiple objectives, there is a single objective to opti-

mize in OCO: the regret of the algorithm. We show that using a portfolio of algorithms can

lead to improved regret bounds. Specifically, we construct portfolios of mirror-descent al-

gorithms based on block norms, and demonstrate how combining them with multiplicative

weights techniques can adaptively achieve low regret rates even when the geometry of the

problem is unknown.

Real-world applications. We apply our algorithms and portfolios to various real-world

settings, including the following.

1. Recommending new pharmacies in the US. We build a web tool that identifies medi-

cal deserts in each state in the US – poorer regions that are significantly far away from
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their nearest major pharmacy (see Figure 1.1 and Chapter 3). Further, we construct

a portfolio of options to open new pharmacies in each state. Different solutions in

the portfolio prioritize different regions, but would all potentially lead to a significant

reduction in the number of medical deserts.

2. Healthcare intervention. We consider a real-world healthcare intervention problem,

modeled as a Multi-Objective Reinforcement Learning (MORL) problem described

in Chapter 6 and [21]. ARMMAN [22], an NGO based in India, runs large-scale

maternal and child mobile health programs. One of their initiatives delivers critical

health information via weekly automated voice messages. To enhance engagement,

a limited number of beneficiaries receive direct calls from health workers each week,

with call assignments determined by a policy. The problem involves prioritizing

different socio-demographic groups among the beneficiaries. We build several port-

folios of policies that benefit different economic and income groups differently (see

Figure 1.2 for one such portfolio).

Table 1.1 summarizes some of these contributions. Together, these results build a uni-

fied theory of portfolios across discrete, continuous, and online optimization, highlighting

the fundamental trade-offs between solution quality, portfolio size, and algorithmic effi-

ciency. These require developing new algorithmic tools, and we now outline the main

challenges.
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Table 1.1: A summary of the various settings covered in different chapters of this thesis. For formal problem definitions, see Chapter 2.

Chapter Class of functions C Sense Feasible set D or problem Reference

Chapter 3

Conic combinations

Minimization

Arbitrary Theorem 3.1, Lemma 3.1

Monotonically interpolating families
like Lp norms, top-ℓ norms,
and convex combinations

Arbitrary Theorem 3.2
Fair Subsidized Facility Location,

k-Clustering, and
Uncapacitated Facility Location

Theorem 3.4,
Corollary 3.1,
Theorem 3.5

Chapter 4
Ordered norms and

symmetric monotonic norms
Minimization

Arbitrary Theorem 4.3, Lemma 4.5
Machine Loads Identical Jobs Theorem 4.1, Lemma 4.10

Covering Polyhedron Theorem 4.2

Chapter 5 Symmetric monotonic norms Minimization

Completion Times

Theorem 5.1
Ordered TSP

Ordered Set Cover and
Ordered Vertex Cover
k-Clustering and

Uncapaciated Facility Location Theorem 5.2, Theorem 5.3

Chapter 6 p-Mean functions Maximization
Arbitrary

Theorem 6.1, Corollary 6.1
Multi-Objective Reinforcement Learning
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1.3 Algorithmic Challenges

We highlight some algorithmic challenges that arise in constructing small portfolios.

Beyond counting functions. A natural approach to obtaining portfolios is to count the

number of distinct objectives in the class C of objectives, up to α-approximation, and then

optimize for each objective. This yields small portfolios in some cases: for example, O(1)-

approximate portfolios of size O(log d) for Lp norms [23], and poly(d)-sized portfolios

for ordered norms [20]. However, this strategy ignores the feasible set D entirely, and can

greatly overestimate the necessary portfolio size. Further, the number of distinct functions

in C may be infinite (as with p-means for any constant α), making the approach inappli-

cable. Obtaining optimal bounds, therefore, often requires reasoning about both C and D

simultaneously.

Loss of structure beyond simultaneous approximations. For portfolios of size 1, pow-

erful structural results exist: e.g., [9] showed that if a solution is an α-approximation for

all top-ℓ norms, then it is also an α-approximation for the broader class of symmetric

monotonic norms. Such results collapse large families of objectives into smaller, more

manageable ones. Unfortunately, this connection breaks down once we move beyond size-

1 portfolios. Thus, new techniques are needed to handle richer classes of objectives where

these results no longer apply.

Designing lower bounds. Given an optimization problem, proving lower bounds on the

size of the smallest α-approximate portfolio involves careful constructions that appropri-

ately trade off various objectives.

Problem-specific barriers. In addition to these general challenges, individual problems

such as FSFL, scheduling, reinforcement learning, online learning, etc, have their own

technical challenges. We discuss these in detail in the respective chapters.
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1.4 Overview

Here, we present an overview of the various chapters and results in the thesis.

Chapter 3. We begin with a discussion of portfolios for conic combinations andLp norms

of the base objectives, and apply these results to a novel facility location problem.

First, under mild technical assumptions, we first give portfolios for the class C of

weighted linear or conic combinations of given base objective functions. However, the

size of this portfolio has an exponential dependence on the number d of base objectives,

and we show that this dependence is necessary in the worst case. This is not unexpected

in such a general setting: each stakeholder i ∈ [d] could have widely varying preferences,

and balancing them in various ways forces us to consider a large number of solutions that

satisfy these varied combinations.

One way to meaningfully reduce portfolio sizes is to narrow down the class C of ob-

jectives. We do this by instead looking at objectives that interpolate between an efficiency

and an equity objective. These two fundamentally important objectives are defined next.

When base objective hi represents the cost paid by stakeholder i ∈ [d], a natural ob-

jective is to minimize the sum of costs paid by all stakeholders. This is the classically

studied efficiency or utilitarian objective, where we seek to minimize the sum of costs

borne by all individuals, or equivalently, the L1 norm of h := (h1, . . . , hd) defined as

∥h(x)∥1 :=
∑

i∈[d] hi(x) for each solution x ∈ D. At the other extreme, we have the eq-

uity or the egalitairian objective, which is the maximum cost borne by any stakeholder, or

equivalently, the L∞ norm ∥h(x)∥∞ := maxi∈[d] hi(x) of h.

Next, we consider classes C of objectives that interpolate monotonically between these

efficiency and equity objectives. Examples of such classes include convex combinations of

the efficiency and equity objectives, Lp norms of the base objectives, and top-ℓ norms of

the base objectives. Given an oracle to find β-approximations to each objective h ∈ C, we

obtain portfolios for C with size logarithmic in d:
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Theorem 3.2. Let h1, . . . , hd : D → R≥0 be d nonnegative functions on feasible setD, and

denote h = (h1, . . . , hd). Let C denote a class of objectives that interpolate monotonically

between ∥h∥1 and ∥h∥∞, and let Oβ be an oracle that gives a β-approximate solution to

argminx∈Dh(x) for any h ∈ C. There exists an algorithm that given any ε ∈ (0, 1], finds

a β(1 + ε)-approximate portfolio of size at most O
(
log βd

ε

)
in poly(d, 1

ε
) number of oracle

calls to Oβ .

We also show that this portfolio size is tight up to constant factors for Lp norms. That

is, a logarithmic number of solutions is sometimes necessary for Lp norms. In particular,

simultaneous approximations may not exist.

To illustrate this result on a concrete setting, we introduce the Fair Subsidized Facility

Location (FSFL) problem. This problem generalizes two well-studied problems in com-

puter science and operations research – the uncapacitated facility location and k-clustering

problems. In FSFL, each client generates revenue for the open facility to which it is as-

signed. Some of the profits from the profit-making facilities can be diverted to the loss-

making locations to sustain them, while improving access throughout all neighborhoods.

We obtain a new approximation algorithm for FSFL for a large class of convex objectives,

which then leads to portfolios for FSFL.

Chapter 4. Next, we study portfolios for ordered and symmetric monotonic norms. Since

the objectives h1, . . . , hd represent some notion of cost borne by various stakeholders, it is

reasonable to consider some ‘size’ or a norm of the vector h(x) of costs as the objective,

with different norms giving different objectives. Chapter 3 deals with designing portfolios

for any C of norms that interpolate monotonically between the L1 norm and L∞ norm of

h, including Lp norms, top-ℓ norms, and convex combinations of efficiency and equity.

However, many natural classes of norms do not interpolate monotonically between ∥h∥1

and ∥h∥∞. Two such classes are ordered norms and symmetric monotonic norms.

Given d positive weights, the ordered norm of the vector (h1(x), . . . , hd(x)) is obtained
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by weighting the highest cost among h1(x), . . . , hd(x) with the highest weight, the second

highest with the second highest weight, and so on. Ordered norms generalize top-ℓ norms.

Unlike top-ℓ norms, they do not always admit logarithmic-sized portfolios.

Symmetric monotonic norms are an even more general class of norms and include all

norms that are (1) invariant to the permutation of coordinates and (2) monotone in each

coordinate. Since each coordinate represents some notion of cost borne, monotonicity is

a natural requirement. Symmetry means that the cost on one stakeholder is not treated

differently from the cost on another stakeholder.4

The sizes of O(1)-approximate portfolios can be polynomial in d in the worst case. We

ask if we can reduce this size to polylogarithmic in d for some optimization problems. First,

we study the MACHINELOADSIDENTICALJOBS problem, where n identical jobs must be

scheduled on d unidentical machines. A schedule consists of an assignment of jobs to ma-

chines. Given a schedule, the cost hi on machine i ∈ [d] is the total load on machine i.

The efficiency objective corresponds to minimizing the total load on all machines. The eq-

uity objective corresponds to minimizing the maximum load on any machine and is known

classically as the makespan minimization problem. We give upper and lower bounds on the

size of α-approximate portfolios for this problem:

Theorem 4.1. There is a polynomial-time algorithm that, given any instance of the MA-

CHINELOADSIDENTICALJOBS problem with d machines and any α > 4, finds a portfolio

X of size

|X| = O

(
log d

log(α/4)

)
that is (i) α-approximate for ordered norms and (ii) O(α log d)-approximate for symmet-

ric monotonic norms. Further, for all α > 1, there exists a family of instances of MA-

CHINELOADSIDENTICALJOBS for which the size of any α-approximate portfolio for or-

dered norms is Ω
(

log d
logα+log log d

)
.

4Up to the design of the cost functions hi, i ∈ [d].
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Next, we generalize this to portfolios for arbitrary COVERINGPOLYHEDRON {x ∈

Rd
≥0 : Ax ≥ b} with A ≥ 0 where the cost hi(x) = xi. When the constraint matrix A has

a constant number of constraints, we show that the covering polyhedron admits a portfolio

of size polylog(d) that is O(1)-approximate for ordered norms and O(log d)-approximate

for symmetric monotonic norms:

Theorem 4.2. For COVERINGPOLYHEDRON in d dimensions and r constraints, for any

ε ∈ (0, 1], there is a portfolio X of size

|X| = O
(
log(d/ε)/ε

)3r2−2r
,

which is (i) (1 + ε)-approximate for ordered norms, and (ii) O(log d)-approximate for

symmetric monotonic norms. There exists an algorithm to find this portfolio with running

time that is polynomial in d and (log(d)/ε)r
2
.

Chapter 5. In each of our results thus far, simultaneous approximations (provably) do not

exist: all portfolio sizes are larger than 1. In Chapter 5, building on previous work, we in-

troduce a general algorithmic framework called IterativeOrdering to obtain new or

improved simultaneous approximations for various combinatorial optimization problems.

In particular, we give the first constant-factor simultaneous approximation for a schedul-

ing problem (called COMPLETIONTIMES) where we seek to minimize different norms of

the completion times of jobs5, and show the existence of an improved simultaneous ap-

proximation factor for generalizations of the traveling salesman problem (denoted OR-

DEREDTSP) and the set cover problem (denoted ORDEREDSETCOVER). More generally,

we define a class of problems called γ-COMPOSABLE problems, which generalizes each of

the above problems, and obtain simultaneous approximations for it:

5Contrast this with the result in Chapter 4 where we discuss scheduling problems to minimize machine
loads instead.
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Theorem 5.1. 1. For any γ-COMPOSABLE problem, there always exists a simultaneous

(
√
γ + 1)2-approximation.

2. For ORDEREDSETCOVER, ORDEREDVERTEXCOVER, and COMPLETIONTIMES,

there always exists a simultaneous 4-approximation.

3. For ORDEREDTSP, there always exists a simultaneous (3 + 2
√
2)-approximation.

4. For COMPLETIONTIMES, a simultaneous 8-approximation can be found in polynomial-

time.

Chapter 6. We pivot to maximization problems next and discuss portfolios for p-mean

functions in Chapter 6. These are natural analogues of Lp norms for maximization. In

particular, we discuss portfolios for reinforcement learning settings where, instead of a

single reward function, d stakeholders each have their own reward functions.

For p ≤ 1, the p-mean of a vector z ∈ Rd
>0 is defined as the pth root of the mean

of the pth power of coordinates of z, i.e.,
(

1
d

∑
i∈[d] z

p
i

)1/p
. p-Means generalize the arith-

metic mean or utilitarian welfare function (p = 1), the minimum or the egalitarian welfare

function (p = −∞), and the geometric mean or the Nash welfare function (p = 0).

Assuming that the base objectives are bounded 1 ≤ hi(x) ≤ κ for all x ∈ D and

i ∈ [d], we obtain an α-approximate portfolio of size O
(

lnκ
ln(1/α)

)
for all p-mean functions.

Our algorithm assumes an oracle for finding the x∗ ∈ D that maximizes the p-mean of

h(x), for any given p. Our results also hold in the setting when the base functions hi are

random – a useful generalization for the reinforcement learning setting described below.

Theorem 6.1. Given feasible set D, (possibly random) base objectives h1, . . . , hd : D →

R>0 with condition number κ, and desired approximation factor α ∈ (0, 1), Algorithm 7

(p-MeanPortfolio) returns an α-approximate portfolio of policies X for the class C of

all p-mean functions for p ≤ 1. Further,
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1. The portfolio size

|X| = O

(
lnκ

ln(1/α)

)
,

2. The number of oracle calls by the algorithm is upper-bounded by

Õ

(
(lnκ)2 ln ln d

ln(1/α)

)
,

where Õ hides all lower order terms.

As an application, we consider a Multi-Objective Reinforcement Learning (MORL)

setting where we are given an MDP with d reward functions (each bounded between 1 and

κ) that represent the preferences of d stakeholders. These rewards can be aggregated in

different ways using different p-mean functions. Using the above result, we obtain an α-

approximate portfolio of O
(

lnκ
ln(1/α)

)
policies for this MORL setting, with Õ

(
(lnκ)2 ln ln d

ln(1/α)

)
oracle calls.

Our algorithm assumes that we can find the optimal policy for any given p-mean aggre-

gation of the reward functions. This oracle call is expensive in practice, and therefore, any

algorithm is practical only if it uses a small number of oracle calls.

Additionally, we provide a lightweight heuristic algorithm to complement our main

algorithm, which makes fewer oracle calls but achieves similar performance in practice. We

compare both our main algorithm and the lightweight heuristic in three different settings

and show that they significantly outperform natural baselines.

Chapter 7. Previous chapters construct portfolios of solutions. In Chapter 7, we ask a

different question: can we construct portfolios of algorithms to solve optimization prob-

lems, and improve performance over standard algorithms?

We partially answer this question in the setting of Online Convex Optimization (OCO).

In OCO, a learner repeatedly makes decisions from a convex set while an adversary reveals

convex loss functions, and the goal is to minimize regret against the best fixed decision
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in hindsight. Online Mirror Descent (OMD) is a family of algorithms for OCO, and in-

cludes standard algorithms such as Online Projected Gradient Descent (OPGD) and Online

Exponentiated Gradient (OEG).6

A straightforward approach to improving regret over OPGD and OEG is to use a differ-

ent OMD algorithm to better suit the problem geometry. First, building on previous work,

we introduce a portfolio of OMD algorithms corresponding to different block norms (see

Definition 2.1) that smoothly interpolate between OPGD and OEG-like geometries. We

show that using an appropriate block norm for the OMD algorithm leads to significant re-

gret improvement over OPGD and OEG-like algorithms in certain regimes. Specifically,

(1) we give OCO settings where the convex body is the probability simplex, where this

regret improvement is ≃
√
ln d in dimension d, and (2) OCO settings on another polytope

where this regret improvement is polynomial in d. To the best of our knowledge, this is

the first polynomial in dimension improvement in regret over both OPGD and OEG-like

algorithms. We complement our theoretical guarantees with numerical simulations over

the probability simplex.

However, since the convex loss functions are unknown in advance, the choice of the

optimal block norm cannot be ascertained in advance. We combine our portfolio of block

norms with a multiplicative-weight update algorithm that automatically chooses the opti-

mal algorithm in the portfolio, while guaranteeing that the regret is at most factorO(
√
ln ln d)

times the regret of the best block norm in hindsight.

Formally, for an OCO setting on convex body K, convex loss functions f (1), . . . , f (T )

over a horizon of T steps, we show the following:

Theorem 7.7 (Combining block norms). Consider an OCO setting with convex body K

that lies within the L1 norm ball in Rd. Suppose the number of time steps T ≥ 4 ln ln d,

and suppose the differential in loss functions maxx,z∈K,t∈[T ] f
(t)(x) − f (t)(z) = 1. Then,

given the Euclidean diameter Deuc = maxx,z∈K ∥x − z∥2 and Euclidean gradient norm

6Over the probability simplex.
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bound Geuc = maxx∈K,t∈[T ] ∥∇f (t)(x)∥2, MirrorWeights (Algorithm 12) with block

norms achieves regret at most

regret(T ) = O(
√
ln ln d) · min

n∈{20,...,2log2 d}
DnGn

√
T ,

where Dn is the diameter under the corresponding Bregman divergence Bhn and Gn is the

gradient norm upper bound in the dual norm to nth block norm.

Here, n ∈ {20, . . . , 2log2 d} indexes the block norms, and O(DnGn

√
T ) is the standard

upper bound on the regret of OMD with the nth block norm.

1.5 Related Work

Having outlined the contributions, we now situate this work within the broader literature.

A foundational strand of work in algorithms studies approximation guarantees for com-

binatorial optimization problems, asking when a single solution can simultaneously ap-

proximate multiple objectives (i.e., portfolios of size 1). The earliest results go as far back

as 1975; [24] study the scheduling problem of minimizing loads on identical machines and

show that Graham’s [25] greedy algorithm is a 1.5-approximation for all Lp norms. Ku-

mar and Kleinberg [8] studied simultaneous approximations for all symmetric monotonic

norms for clustering, scheduling, and flow problems. [23] identify that several combinato-

rial problems admit a similar algorithmic technique to obtain simultaneous approximations;

we formalize and generalize their technique as IterativeOrdering in Chapter 5. [9]

in particular study simultaneous approximations for various problems and establish a fun-

damental result that shows that simultaneous α-approximations for top-ℓ norms are simul-

taneous α-approximations for other classes of norms like Lp norms. When portfolio size

is larger than 1, portfolios for top-ℓ norms may not be portfolios for Lp norms and other

classes (see Chapter 3 and Chapter 4 for examples), thus requiring new techniques to handle

such cases. The list of works that give simultaneous approximations for specific problems

21



is too long to fit here; we mention some examples: [26] and [27] give simultaneous approx-

imations for the traveling salesman problem, while [28] discuss it for scheduling.

To the best of our knowledge, we are the first to explicitly study portfolios for arbitrary

infinite classes of objectives. However, similar notions are implicit in the works of [8,

9, 23, 20]. [23] in particular study Lp norms and their results imply logarithmic-sized

portfolios for Lp norms. Their technique, however, crucially uses the structure of Lp norms

and does not generalize to other classes that monotonically interpolate between L1 and

L∞ norms. Our technique for portfolio upper bounds for such families closely resembles

the technique of [9], who use it to get portfolio-like constructions for top-ℓ norms. [20]

essentially construct polynomial-sized portfolios for ordered norms.

Another well-known related concept is the notion of Pareto frontier approximations

[29]. Pareto frontier of objectives h1, . . . , hd on feasible set D is the set of all points h(x)

for x ∈ D where not all of the function values can be improved, i.e., for all x′ ∈ D, hi(x′) >

hi(x) for some i ∈ [d]. The (1 + ε)-approximate Pareto frontier relaxes this constraint by

factor (1 + ε). [29] give algorithms to compute Pareto frontiers for several problems,

and a long line of works builds on these results to give Pareto frontier approximations for

specific settings [30, 31, 18]. The notions of Pareto frontiers and portfolios coincide in

the special case of size equal to 1, i.e, if some feasible solution x∗ ∈ D is simultaneously

optimal for all hi(·), i ∈ [d], then the Pareto frontier reduces to the single point {h(x∗)}.

This also holds true when x∗ ∈ D is simultaneouly α-approximate for all hi(·) or that

hi(x
∗) ≤ minx∈D hi(x) for all i, in which case the single point {h(x∗)} coordinate-wise

α-approximates the Pareto frontier.

The trade-off between fairness and accuracy has been well-studied in both machine

learning and combinatorial optimization communities. Most of these works optimize a

fixed trade-off between fairness and accuracy, but do not specify how the trade-off is cho-

sen. [32] introduce a regularization term added to the objective function to penalize any

dependence between the model’s predictions and a sensitive attribute. [33] formulate fair-
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ness as a multi-objective learning problem of finding a data representation that balances

the twin goals of preserving predictive information and obfuscating information about the

protected group membership. [10] and [11] establish negative results showing that different

measures of fairness cannot always hold simultaneously. In combinatorial optimization, the

trade-off between fairness and accuracy is studied by optimizing for a fixed non-standard

objective, such as an Lp or top-ℓ norm. The list is too long to fit here; we give some rep-

resentative examples. [23, 34, 27, 35, 36] study Lp norm objectives, [9, 37] study top-ℓ

norm objectives, [20, 38] study ordered norm and symmetric monotonic norm objectives,

and [39, 40, 41, 42] study p-means objectives.

Next, we discuss the OCO problem from Chapter 7. In this setting, it is known that algo-

rithms other than OPGD and OEG can achieve asymptotically better regret rates in certain

settings, motivating a portfolio of OMD algorithms that is agnostic to problem geometry.

For example, [43] give logarithmic in dimension improvement in regret. However, to the

best of our knowledge, we are the first to show polynomial in dimension improvement in

regret over both OPGD and OEG (or an equivalent proxy). Once we have a portfolio of on-

line algorithms, the Multiplicative Weight Update (MWU) method [44] gives a natural way

to combine them. Existing approaches use MWU to make specific OMD algorithms agnos-

tic to parameters [45, 46, 47], and our approach of combining different OMD algorithms is

a natural extension.

Notions similar to portfolios – where allowing more than a single solution is desired

– appear in other settings as well. For example, [48] study combinatorial problems with

stochastic objectives and seeks a portfolio of solutions to optimize the expected value of

the best solution. As another example, in Online Convex Optimization in the bandit setting

– i.e., when the player can only observe the loss function partially – being able to evaluate

the loss function at multiple points can significantly reduce regret (see, for example, [49]).

In voting theory, Condorcet winning sets provide a natural analogue of the solution

portfolios studied in this thesis: in ranked-choice voting (i.e., when each voter provides a
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strict ranking over the m candidates), rather than insisting on a single universally optimal

alternative (called a Condorcet winner), one seeks a small committee of candidates such

that a majority of voters do not prefer a candidate to each candidate in the committee.

[50] showed that such a committee of O(logm) candidates always exists in the worst case.

More recently, [51] proved that a constant-size set suffices: specifically, every election

admits a Condorcet winning set of at most six candidates, improving the long-standing

logarithmic bound. These examples parallel the central theme of this thesis: insisting on

a single solution is often unnecessarily restrictive, whereas allowing small portfolios can

dramatically expand what guarantees are achievable.

Finally, in many settings, the objective function f ∈ C itself is unknown, and one

seeks to infer it based on querying the feasible solutions (e.g., inverse optimization [52],

preference elicitation [53] etc).
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CHAPTER 2

BACKGROUND

In this chapter, we develop some notation, cover some background on approximations and

norms, and define the various combinatorial problems that we study in this thesis.

2.1 Notation and Preliminaries

Minimization and maximization problems. An optimization problem is specified by a

set or domain of feasible solutions D and an objective function h : D → R. In a minimiza-

tion problem, the goal is to find x∗ ∈ D with h(x∗) = miny∈D h(y). In a maximization

problem, the goal is to find x∗ ∈ D with h(x∗) = maxy∈D h(y).

Approximations. For a minimization problem with feasible set D and nonnegative ob-

jective h : D → R≥0, we say that x ∈ D is an α-approximate solution if

h(x) ≤ α ·min
y∈D

h(y),

for some factor α ≥ 1. For maximization problems, x is an α-approximate solution if

h(x) ≥ α ·max
y∈D

h(y),

for some α ∈ (0, 1].

Portfolios. While the above definitions concern a single objective function, the central

concept of this thesis is the notion of portfolios, which generalizes approximation from one

objective to an entire class of objectives. We formally introduced minimization and max-

imization portfolios in the Introduction (Definition 1.1 and Definition 1.2), and will build
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on those throughout the thesis. When X is a 1-approximate portfolio for some feasible set

D and class C of functions, we say that X is an optimal portfolio. α-approximate portfolio

X = {x} is singleton, we say that x is a simultaneous α-approximation.

Norms. A recurring motif in this thesis is the study of optimization under various ways

of measuring fairness. When a vector x ∈ Rd
≥0 represents costs on various stakeholders,

the natural way to measure whether x is fair or not is to measure its ‘size’. Next, we define

the various norms of a vector considered in this work that measure this size.

Given vector x ∈ Rd
≥0, we denote by x↓ ∈ Rd

≥0 the vector formed by sorting the

coordinates of x in decreasing order. Given a subset S ⊆ [d] of coordinates, we denote

xS ∈ RS to be the restriction of x to coordinates in S.

Definition 2.1 (Norms). Given a vector x ∈ Rd,

1. Given p ≥ 1, the Lp norm of x, denoted ∥x∥p is defined as

∥x∥p :=
(∑

i∈[d]

|xi|p
)1/p

. (2.1)

2. Given ℓ ∈ [d], the top-ℓ norm of x, denoted ∥x∥(1ℓ), is defined as the sum of the ℓ

highest coordinates of x by absolute value:

∥x∥(1ℓ) :=
∑
i∈[ℓ]

|x|↓i . (2.2)

3. Given a nonzero vector w ∈ Rd
≥0 with w1 ≥ w2 ≥ . . . ≥ wd ≥ 0, the corresponding

ordered norm of x, denoted ∥x∥(w), is defined as

∥x∥(w) :=
∑
i∈[d]

wi|x|↓i . (2.3)

w is called the weight vector associated with the ordered norm.
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4. A norm ∥ · ∥ : Rd → R is called a symmetric monotonic norm if it is (1) invariant to

the permutation of coordinates, and (2) monotone in each coordinate.

5. Given a partition B = {B1, . . . , Bn} of the d coordinates into n blocks, the block

norm of x, denoted ∥x∥[B], is defined as the sum of the L2 norms of each block:

∥x∥[B] :=
∑
j∈[n]

∥xBj
∥2 =

∑
j∈[n]

√∑
i∈Bj

x2i (2.4)

Of crucial importance will be the duals of the above norms, defined as follows:

Definition 2.2 (Dual Norm). Given a norm ∥ · ∥ on Rd, its dual norm ∥ · ∥∗ is defined for

any y ∈ Rd as

∥y∥∗ := sup
∥x∥≤1

⟨x, y⟩.

Majorization. For nonnegative vectors x, y ∈ Rd
≥0, we say that y majorizes x or x ⪯ y

if ∥x∥(1ℓ) ≤ ∥y∥(1ℓ) for all ℓ ∈ [d]. The following lemma shows that majorization implies

monotonicity for any symmetric monotonic norm.

Lemma 2.1 ([54]). If x ⪯ y, then ∥x∥ ≤ ∥y∥ for any symmetric monotonic norm ∥ · ∥.

As [9] show, the above lemma implies that for minimization problems, simultaneous

approximations for top-ℓ norms are simultaneous approximations for all symmetric mono-

tonic norms, despite the latter being a much bigger class of norms. Given some feasible set

D and base functions h1, . . . , hd, consider x∗ that is simultaneously α-approximate for all

top-ℓ norms for some α ≥ 1. Then ∥h(x∗)∥(1ℓ) ≤ α∥h(y)∥(1ℓ) for all ℓ ∈ [d] and y ∈ D,

i.e., that h(x∗) ⪯ αh(y) for all y ∈ D. As an immediate consequence, we get the following

result from [9] that we state in a modified form:

Lemma 2.2 ([9], Theorem 2.3). For any D and base functions h1, . . . , hd : D → R≥0,

if x∗ is a simultaneous α-approximation for top-ℓ norms, then x∗ is a simultaneous α-

approximation for all symmetric monotonic norms.
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It is natural to ask if this result for simultaneous approximations – that is, portfolios of

size 1 – extends to portfolios of size greater than 1. That is, if X ⊆ D is an α-approximate

(minimization) portfolio for top-ℓ norms, is it also an α-approximate portfolio for all sym-

metric monotonic norms, regardless of what |X| is? The answer is no, as the following

example shows:

Example 2.1. Consider setD = {x, y, z} ∈ Rd of three feasible vectors x = (
√
d, 0, . . . 0),

y = (1, . . . , 1), and z = d1/3
(
1, 1√

2
, . . . , 1√

d

)
, and hi(x) = xi for all i ∈ [d], i.e., h(x) =

x. Then, given a top-ℓ norm,

∥x∥(1ℓ) =
√
d, ∥y∥(1ℓ) = ℓ, ∥z∥(1ℓ) = d1/3

∑
i∈[ℓ]

1√
i
= Θ(d1/3

√
ℓ).

For each top-ℓ norm, either x or y is optimal, i.e., {x, y} is an optimal portfolio for top-ℓ

norms. However, consider the ordered norm for weight vector w =
(
1, 1√

2
, . . . , 1√

d

)
:

∥x∥(w) =
√
d, ∥y∥(w) = Θ(

√
d), ∥z∥(w) = d1/3

∑
i∈[d]

1

i
= Θ(d1/3 log d).

Then both x and y are Ω
(

d1/6

log d

)
-approximations for ∥·∥(w), i.e., {x, y} is at best a poly(d)-

approximate portfolio for ordered norms.

p-Mean Functions. For maximization problems, we will consider the following ana-

logues to Lp norms, called the p-mean functions:

Definition 2.3 (p-Mean function). Given a vector x ∈ Rd
>0 and p ∈ [−∞, 1], the p-mean

of x, denoted Mp(x), is defined as

Mp(x) =


mini∈[d] xi if p = −∞,(

1
d

∑
i∈[d] x

p
i

)1/p
if p ̸∈ {−∞, 0},(∏

i∈[d] xi

)1/d
if p = 0.

(2.5)
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2.2 Glossary of Problems

This section is intended as a reference glossary. It collects the formal definitions of the

combinatorial problems studied in this thesis. Readers may wish to skip it on a first pass

and return to it as needed when encountering these problems in later chapters.

2.2.1 Facility Location Problems

First, we define the various facility location problems studied in this thesis, including

the well-known UNCAPACITATEDFACILITYLOCATION and k-CLUSTERING problems, as

well as the Fair Subsidized Facility Location (FSFL) problem that we introduce. In each

of the three problems, we are given a metric space (C ∪ F,dist) with set C of clients,

set F of potential open facilities, and distances dist that form a metric. The goal is to

open a subset F ′ ⊆ F of facilities and assign Π : C → F ′ the clients to open facilities; this

solution is denoted (F ′,Π). However, there are additional inputs and restrictions in each

problem, which we specify next:

UNCAPACITATEDFACILITYLOCATION. The input consists of (1) a metric space (C ∪

F,dist) and (2) nonnegative facility opening costs c : F → R≥0. For a subset F ′ ⊆ F

of open facilities and an assignment Π : C → F ′ of clients to open facilities, the classical

objective is to minimize the sum of the costs of open facilities and the distances of clients

to their assigned facilities, i.e.,
∑

f∈F ′ cf +
∑

j∈C distj,Π(j). We will study various other

objectives; see Chapter 3 and Chapter 5.

k-CLUSTERING. The input consists of (1) a metric space (C ∪ F,dist) and (2) an

integer 1 ≤ k ≤ |F |. Solution (F ′,Π) is feasible if and only if at most |F ′| ≤ k facilities

are open. Classical objectives include (a) k-median, which is to minimize the L1 norm of

the distances of clients to open facilities, i.e.,
∑

j∈C distj,Π(j), (b) k-means, which is to

minimize the L2 norm of client distances, and (c) k-center, which is to minimize the L∞

norm of client distances. We will study various other objectives.
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FSFL. The input consists of (1) a metric space (C ∪ F,dist), (2) nonnegative facility

opening or operating costs c : F → R≥0, (3) client revenues r : C → R≥0, and (4) a

subsidy parameter δ > 0. An open facility f ∈ F ′ is unprofitable if the total revenue∑
j∈C:Π(j)=f ′ rj of clients assigned to it is less than its operating cost cf , and the loss of an

unprofitable facility is defined as cf −
∑

j:Π(j)=f ′ rj . Solution (F ′,Π) is feasible if and only

if the total loss of unprofitable facilities is at most a fraction δ of the total client revenue∑
j∈C rj . We study various objectives for this problem; see Chapter 3.

2.2.2 Scheduling and Covering Polyhedra

Next, we define various scheduling problems and covering polyhedra. In a scheduling

problem, we are given d machines, n jobs, and processing times pi,j > 0 for each job

j ∈ [n] on each machine i ∈ [d]. A feasible solution consists of an assignment of each job

to some machine, and an ordering of the jobs assigned to each machine.

COMPLETIONTIMES. The goal of this problem is to minimize (some function of) the

completion times of jobs. For job j ∈ [n] assigned to machine i ∈ [d] in a feasible solution,

the job’s completion time is defined as the sum of the processing times of jobs assigned to

i before j (including j).

MACHINELOADSIDENTICALJOBS. In this problem, the goal is to minimize (some

function of) the loads on various machines, assuming that the n jobs have the same pro-

cessing time for any given machine. Since the n jobs are identical, we refer to pi, i ∈ [d] as

the processing time for each machine. The load on a machine is defined as the sum of the

processing times of jobs assigned to it. Note that the order of jobs assigned to a machine

does not matter in this case.

COVERINGPOLYHEDRON. In this problem, the feasible set D = {x ∈ Rd : Ax ≥

b, x ≥ 0} where A≥0 ∈ Rr×d is a nonnegative matrix and b ∈ Rr
≥0, D is commonly known

as a covering polyhedron. The goal is to minimize various functions of x ∈ D.
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2.2.3 Other Combinatorial Problems

ORDEREDSETCOVER. The input consists of a ground set of n elements and m subsets

S1, . . . , Sm of the ground set. The output is an order on the subsets; each output induces a

vector of cover times of elements in the ground set, defined for an element as the position

of the first set in the order containing it. Given a norm ∥ · ∥ on Rn, the objective is to

minimize the norm of cover times. Special cases include classical Set Cover (for the L∞

norm) [55], and Min-Sum Set Cover or MSSC (for the L1 norm) [56].

ORDEREDVERTEXCOVER. This is a special case of ORDEREDSETCOVER where the

ground set corresponds to edges of an undirected graph and the subsets correspond to ver-

tices of the graph. Special cases include classical Vertex Cover (for the L∞ norm), and

Min-Sum Vertex Cover or MSVC (for the L1 norm) [56].

ORDEREDTSP. The input consists of a metric space on n points or vertices V and a

starting vertex v0 ∈ V . The output is a Hamiltonian tour of the vertices starting at v0;

each tour induces a vector of visit times of the vertices, defined for a vertex as its distance

from v0 along the tour. Given a norm ∥ · ∥ on Rn, the objective is to minimize the norm

of visit times. Special cases include the Traveling Salesman Problem or TSP (for the L∞

norm) [57], the Traveling Repairman Problem (for the L1 norm) [58], and the Traveling

Firefighter Problem (for the L2 norm) [27].
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CHAPTER 3

CONIC COMBINATIONS, MONOTONIC INTERPOLATIONS, AND FACILITY

LOCATION

3.1 Introduction

In this chapter, given a finite set of base objective functions h1, . . . , hd : D → R≥0 (e.g., ac-

cess costs for groups 1 to d), we consider minimization portfolios for the following canon-

ical classes of functions:

(i) Conic combinations of base functions: C1 =
{∑

i∈[d] λihi : λ ≥ 0
}

. Each conic

combination gλ :=
∑

i∈[d] λihi is another objective on D, and represents a unique

way to balance the base objectives. Different conic combinations can have different

minimizers in D.

(ii) Interpolating functions: C2 = {gλ : λ ∈ [a, b] where ga(x) =
∑

i∈[d] hi(x), gb(x) =

maxi∈[d] hi(x)}, which is any parametric class that interpolates monotonically be-

tween the egalitarian/equity (i.e., min max) and utilitarian/efficiency (i.e., min sum)

objectives [60, 61].

Special cases of C2 include the classes of (a) Lp norm objectives
{
∥(h1, . . . , hd)∥p :

p ≥ 1
}

[62], (b) convex combinations of equity and efficiency objectives [63, 64], and (c)

top-ℓ norm objectives [65]. We explore these in more detail in Section 3.4, and our results

will apply to all these settings.

Beyond the foundational understanding of portfolios for these classes of functions, we

next shift our focus to applications. In particular, we discuss a novel extension of the facility

location problem (described next) motivated by the formation of medical deserts [66] due to

This chapter is based on joint work with Swati Gupta and Mohit Singh. A preliminary version appeared
in the Proceedings of the Twenty-Fourth ACM Conference on Economics and Computation (EC) 2023 [59].
An extended version is currently under submission.
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Figure 3.1: A screenshot from our online tool depicting medical deserts in Mississippi,
USA. Note that the majority Black blockgroups (35.42% of all blockgroups) make up
61.03% of all medical deserts. The tool can be found at https://usa-medical-deserts.
streamlit.app/.
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Group Classical L1 norm L2 norm L∞ norm
1 (blue) 0.21 0.42 0.47 0.46
2 (green) 0.89 0.71 0.66 0.54
3 (purple) 0.51 0.32 0.36 0.55
all clients 0.35 0.45 0.48 0.48

Figure 3.2: An illustrative example for k-CLUSTERING with three client groups C1, C2, C3

(in blue, green, and purple, respectively) that partition client setC. We seek to open a single
facility f anywhere inC. The optimal solution for the classical objective

∑
j∈C dist(j, f)

opens facility f near the center of the blue group. If we minimize the Lp norm of vector(
1

|Cs|
∑

j∈Cs
dist(j, f)

)
s=1,2,3

of average group distances, then f moves closer to the

center of all groups as p increases from 1 to ∞. The adjacent table shows average group
distances for optimal solutions to different objectives.

the closure of pharmacies. We design an approximation algorithm for this problem, which

then results in portfolios for facility location. We develop a web tool (see Figure 3.1) which

can be useful for policymakers to guide investment decisions. We also discuss several other

applications in Section 3.2.

Fair Subsidized Facility Location. Inequity in the placement of critical facilities is a

well-documented problem [67, 68, 69, 63]. For instance, it is suspected that profit maxi-

mization by grocery chains has led to the formation of food deserts spread widely across

34



the U.S., which are defined as regions with low-income populations and low access to fresh

food (e.g., people with no cars, and no grocery stores within a mile of their house) [68, 70].

Similarly, a recent New York Times study [66] showed that the closure of local pharmacies

across the U.S. has resulted in the creation of pharmacy deserts. These smaller local stores

often cannot sustain themselves in the wake of rising operating costs and drug prices, thus

leading to closure. On the other hand, large pharmacy chains collect their revenues from

a much broader source of users and have a higher negotiating power for drug prices, thus

being more robust to financial difficulties.

We first consider a fair facility location problem, where given a p ≥ 1, the goal is to

minimize the Lp norm of the distances traveled by each group of people. Our notion of

portfolios is directly applicable here. We show that a portfolio of solutions can help us

get around the choice of p, so the decision-maker can focus on the placement of facilities

suggested by the portfolio, instead of debating modeling choices.

Specifically to optimize for profit-sustaining facilities, we propose a novel subsidized

model of facility location where some of the profits from the large profit-making pharma-

cies can be diverted to the loss-making locations to sustain them, while improving access

throughout all neighborhoods. Our model addresses the fundamental tension between prof-

itability and healthcare access. This problem models how a central planner might strategi-

cally place pharmacies to ensure coverage in underserved areas, allowing some facilities to

operate at a loss, which is subsidized by more profitable locations. These losses are bound

by a fraction δ (called subsidy) of the revenue that the planner can specify in advance, thus

allowing them to be fairer to underserved communities while keeping losses limited. Our

model generalizes the extensively-studied classical k-CLUSTERING and UNCAPACITAT-

EDFACILITYLOCATION problems [71, 72, 73, 74]; see Theorem 3.6 in Section 3.7.

Formally, in Fair Subsidized Facility Location (FSFL), we are given a set of clients C

with non-negative revenues r : C → R≥0, potential facilities F with nonnegative operating

costs c : F → R≥0 and distances dist on C∪F that form a metric, i.e., satisfy the triangle
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inequality. A solution consists of a set of open facilities F ′ ⊆ F and an assignment of each

client to an open facility represented by Π. An open facility f ∈ F ′ is profitable if its

operating cost cf is less than the revenue
∑

j∈C:Π(j)=f rj brought by clients assigned to it,

and unprofitable otherwise. The solution (F ′,Π) is said to be δ-subsidized if the total loss

of unprofitable facilities is at most a fraction δ of the total revenue
∑

j∈C rj . Each client

j in the model can have a fractional1 group membership (e.g., dependent on geographic

locations or socio-economic status) represented by µj,s ≥ 0 for each group s ∈ [t]. The

goal is to open a set F ′ ⊆ F of facilities and provide an assignment Π : C → F ′ of

clients to open facilities, so that (i) the solution is δ-subsidized, and (ii) the distances of

clients to facilities are equitable under various objectives, i.e., we would like to minimize

the travel costs associated with C =

{
∥h(Π)∥p :=

(∑
s∈[d]

(
h(Π)s

)p)1/p
: p ≥ 1

}
,where

h(Π)s :=
∑

j∈C µj,sdistj,Π(j) is the distance travelled by group s ∈ [d]. Opening fewer

facilities leads to δ-subsidized solutions, but can increase travel costs for clients. Therefore,

we would like to optimize travel costs under various Lp-norms, while respecting that the

solution is approximately δ-subsidized. Apart from Lp norms of group distances, we also

consider convex and sublinear2 functions g : RC
≥0 → R of client distances distj,Π(j).

3.1.1 Technical Results

Having discussed our modeling contributions, we next discuss our key technical results

for (i) portfolios for conic combinations C1, (ii) portfolios for interpolating functions C2,

and (iii) portfolios for FSFL. We end the section with a brief overview of our experimental

results on constructing portfolios to recommend subsidized pharmacies in the U.S.

Portfolios for Conic Combinations. To begin with, we give portfolios for the class

C = {
∑

j∈[d] λjhj : λ ∈ Rd
≥0} of conic combinations of given base objective functions,

1Fractional group memberships have not received much attention in the existing literature at the inter-
section of optimization, ML, and algorithmic fairness, which usually assumes that clients divide into non-
intersecting groups, or considers the finest partition of intersections as unique individual groups [75, 76,
77].

2Function g : RC
≥0 → R is sublinear if g(ατ + τ ′) ≤ αg(τ) + g(τ ′) for all α ≥ 0 and τ, τ ′ ∈ RC

≥0.
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over any domain D such that each objective
∑

j λjhj can be optimized over D up to a

β-approximation (for given β ≥ 1, as we are considering minimization problems). The

portfolio size is bounded in terms of the imbalance u := maxi,j∈[d],x∈D
hi(x)
hj(x)

of the base ob-

jectives, defined as the maximum ratio between any two base functions at any point x ∈ D

in the feasible set. Note that the base functions need not be convex.

Theorem 3.1. Let h1, . . . , hd : D → R>0 be positive (base) functions on feasible setD and

some u ∈ R>0 be such that at any point x ∈ D and any two functions hi, hj , it holds that

hi(x)
hj(x)

≤ u. Let C = {
∑

i∈[d] λihi : λ ∈ Rd
≥0} denote the class of all conic combinations of

h1, . . . , hd, and let Oβ be an oracle to obtain a β-approximate solution to argminx∈Dh(x)

for any h ∈ C for given β ≥ 1. Then, a β(1 + ε)-approximate portfolio of size

|Xε| = d ·
(
12 log (4du/ε)

ε

)d−1

can be constructed using at most poly(|Xε|) number of oracle calls, for any ε > 0.

For example, for base functions h1(x) = x+ 1, h2(x) = x2 + 1, h3 = x3− x2 + 2 over

domainD = [0, 1] ⊆ R, we have u = 2, and the above theorem gives a (1+ε)-approximate

portfolio of size O
(

1
ε2

(
log 1

ε

)2). Unlike previous results that use a multiplicative ε-mesh

to construct such portfolios, our result combines it with an additive ε-mesh, leading to

better approximation ratios (see Subsection 3.1.3 and Section 3.3 for details). Despite

the result’s generality, the dependence on d (number of base functions) is exponential,

but we show in Subsection 3.3.2 that this is unavoidable, unless there are more structural

assumptions on C or the domain. We next present an example where a portfolio of a much

smaller size can be constructed by exploiting the properties of the function class.

Example. C = {
∑

i∈[d] λihi : λ ≥ 0} on D = R, where hi(x) = exp(θ|x −

yi|), for yi uniformly sampled from [0, 1] and some fixed θ > 0. Then the grid X ={
log(1+ε)

θ
, 2 log(1+ε)

θ
, . . . , 1

}
of θ

log(1+ε)
≤ 2θ

ε
points is a (1 + ε)-approximate portfolio for

any ε ∈ (0, 1].
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Portfolios for Monotonically Interpolating Classes. In the above example, the portfolio

size of 2θ/ε is independent of d, and depends on the quality of the approximation factor

and the growth of the functions in the class C. We use similar ideas to generalize existing

results (e.g., [62], [9]) to show the existence of (1 + ε)-approximate portfolios of size

O
(
log d
ε

)
for interpolating classes of objectives:

Theorem 3.2. Let h1, . . . , hd : D → R≥0 be d nonnegative functions on feasible setD, and

denote h = (h1, . . . , hd). Let C denote a class of objectives that interpolate monotonically

between ∥h∥1 and ∥h∥∞, and let Oβ be an oracle that gives a β-approximate solution to

argminx∈Dh(x) for any h ∈ C. There exists an algorithm that given any ε ∈ (0, 1], finds

a β(1 + ε)-approximate portfolio of size at most O
(
log βd

ε

)
in poly(d, 1

ε
) number of oracle

calls to Oβ .

Note that Theorem 3.1 and Theorem 3.2 use an approximation oracle Oβ to construct

the portfolio of solutions. Thus, they reduce the problem of finding portfolios to finding a

β-approximate oracle for the underlying optimization problem for fixed objectives.

Connections with the Pareto Frontier. Portfolios are closely connected to the no-

tion of Pareto frontier of base functions h1, . . . , hd. Given points x, y ∈ D, we say that

x ≺ y or x dominates y if hi(x) ≤ hi(y) for all i ∈ [d] and strict inequality holds for

some i. The Pareto frontier Fh = {h(x) : x ∈ D is not dominated by any y ∈ D} is

the set of non-dominated function values. Given α ≥ 1, the α-approximate Pareto frontier

Fh(α) :=
{
h(x) : x ∈ D, 1

α
h(x) ∈ Fh

}
is the set of all function values that are coordinate-

wise within an α-approximation of the Pareto frontier. Pareto frontiers require a coordinate-

wise dominance, and in general can be much larger than portfolios for conic combinations

of h1, . . . , hd. For example, consider D = {x ∈ R2 : x1 + x2 = 1, x ≥ 0} and let hi

simply be identity function for each coordinate i, i.e., hi(x) = xi for i ∈ {1, 2}, x ∈ R2.

Then, h(x) = x for all x ∈ R2. Since each point in D is non-dominated by any other,

the Pareto frontier Fh must contain every point in D. In particular, Fh is an infinite set.

However, given any λ1, λ2 ≥ 0, consider minimizing λ1h1(x) + λ2h2(x) = λ1x1 + λ2x2
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over D. Clearly, (0, 1) or (1, 0) is always optimal depending on whether λ1 is greater than

λ2, and therefore, the set {(1, 0), (0, 1)} of two points is an optimal portfolio for conic

combinations of functions h1, h2.

Bicriteria Oracle for the Facility Location Problem. We next discuss the approxima-

tion algorithm for FSFL. Like many other NP-hard problems [78, 79, 16], FSFL does not

even admit a β-approximate oracle for any constant β > 0. In fact, even checking whether

a given solution x is feasible (i.e., whether x ∈ D) is NP-hard for FSFL. We show this via

a reduction from the Subset Sum problem (proof included in Section A.1):

Theorem 3.3. Unless P = NP, (A) FSFL is inapproximable to within any constant factor

even when the objective is the sum of client distances, and (B) there is no polynomial-time

algorithm to check the feasibility of a solution to FSFL.

In such cases, the natural next step is to relax one of the constraints by some factor γ to

obtain an extension D(γ) ⊇ D of the feasible set. For example, in the FSFL problem, one

can relax the δ-subsidy constraint to require that the total loss is at most γ × δ
∑

j rj . An

algorithm or oracle that returns solutions x ∈ D(γ) with objective value within factor α of

the optimum in D is called a bicriteria (α, γ)-approximation.

Our definition of portfolios is general enough to accommodate bicriteria approxima-

tions: given an optimization problem with feasible solutions D, a class C of objective

functions and a desired (α, γ) bicriteria approximation, a portfolio is a set P ⊆ D(γ) such

that for each objective h ∈ C, there is some x ∈ P that is an (α, γ)-approximate solution

to h, i.e., h(x) ≤ αminy∈D h(y), where D(γ) is the relaxation of D.

The guarantees given in Theorem 3.1 and Theorem 3.2 also generalize to such bicriteria

problems, as long as the required oracle can be constructed. In the case of FSFL, we allow

the oracle to increase the total loss beyond a fraction δ of the total revenue (while still

bounding it), i.e., the δ-subsidy condition. This extension is necessary for approximations

and allows for meaningful trade-offs between profitability and access costs to facilities in
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our application. To state our result, we make the θ-small revenues assumption, wherein

θ = maxj∈C,f∈F
rj
cf

is defined as the maximum fraction of a facility’s operating cost that

can be met by a single client’s revenue. Most commercial facilities like pharmacies rely

on a large number of clients and so θ is typically very small. Our result formally states the

following:

Theorem 3.4. There exists a polynomial-time algorithm that given an instance of Fair

Subsidized Facility Location (FSFL) that satisfies θ-small revenues assumption and a sub-

sidy δ > 0, returns a (2δ + θ)-subsidized solution whose objective value is within factor

O
(
max

(
1, 1

δ

))
of the optimal δ-subsidized solution.

Our algorithm builds on the Linear Programming rounding approximation algorithm

of [71] for k-CLUSTERING and UNCAPACITATEDFACILITYLOCATION (UFL) with linear

objectives, and our bound matches their approximations within constant factors. There

are two challenges in extending their algorithm to FSFL: first, our objectives are sublinear

rather than linear, and second, their algorithm does not account for the new subsidy con-

straint. We observe that their algorithm generalizes to sublinear objectives; however, the

second challenge requires a new combinatorial subroutine (Subsection 3.5.1) that ensures

that the total losses are bounded. Moreover, there is no α-approximation for UFL with

linear objectives if α < 1.463 unless P = NP [80], implying that our bound for δ > 1 is

tight up to constants.

As a corollary of the above theorem, we obtain portfolios for FSFL with d client groups:

Corollary 3.1. There exists a polynomial-time algorithm that given an instance of Fair

Subsidized Facility Location (FSFL) with d client groups that satisfies θ-small revenues

assumption and a subsidy parameter δ > 0, obtains a portfolio P of sizeO
(
log
(

d
min(1,δ)

))
such that

1. each solution in the portfolio is (2δ + θ)-subsidized, and
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2. for each p ≥ 1, there is a solution in the portfolio with objective value within factor

O
(
max

(
1, 1

δ

))
of the optimum δ-subsidized solution for the Lp norm objective.

In practice, this means that the algorithm can offer decision-makers a small menu of

(say) 3-5 facility layouts that span a wide range of fairness preferences. This is computa-

tionally efficient and allows flexibility without overwhelming the user, as we later show in

our experiments on US Census data and pharmacy chains CVS, Walgreens, and Walmart.

To complement the upper bound, we show the existence of instances of FSFL with d client

groups where any O(1)-approximate portfolio for Lp norms must have size Ω(log d). This

shows that the portfolio size obtained by our algorithm is the best possible (up to constant

factors):

Theorem 3.5. There exist instances of FSFL with δ > 1 where any O(1)-approximate

portfolio for the class C of Lp norms of group distances with d client groups must have size

Ω(log d).

Next, we complement our theoretical results with experiments on U.S. Census data and

locations of pharmacy chains CVS, Walgreens, and Walmart.

Experiments. Recall our web tool (Figure 3.1) for identifying medical deserts, which

are regions with over 20% poverty rate and that are further than n miles from their nearest

CVS, Walgreens, or Walmart pharmacy, where n = 2 for urban areas and n = 10 for

rural areas. In our experiments, we propose 10 new pharmacies alongside 206 existing

CVS, Walgreens, and Walmart pharmacies in the state of Mississippi, USA. We divide the

population into d = 16 groups based on the Congressional district, urbanization levels, and

poverty levels, and give a portfolio of 3-5 solutions based on different Lp norm objectives

with these groups and for different subsidy parameters δ.

Each solution in the portfolio recommends a different set of facilities, thus offering

a varied choice to the policymaker (also see Table 3.1). Despite their diversity, they all

reduce the number of medical deserts identified by our tool from 348 to between 297-305
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Table 3.1: Percent reduction in average distance traveled (vis-a-vis status quo) by 16 differ-
ent groups of people in the portfolio constructed by the portfolio algorithm in Section 3.4
to open new pharmacies in Mississippi, USA, with 2% subsidy (δ = 0.02). Each column
corresponds to a different Lp norm solution, to open 10 new facilities to add to the existing
206 CVS, Walgreens, and Walmart pharmacies. Groups are based on rurality, poverty lev-
els, and congressional district. Bolded text represents optimal solutions for different groups
(rows). See Section 3.6 for details.

Group Portfolio Solutions
Urban/
Rural

Poor/
Not Poor

Congress
District

L1

Norm
L5.4

Norm
L13.5

Norm
L∞

Norm
1 0.0 0.0 0.60 0.0
2 6.0 7.8 11 8.1
3 14 15 15 13

Not
Poor

4 4.0 4.1 1.2 1.1
1 0.0 0.0 0.12 0.0
2 12 18 18 19
3 21 21 21 21

Rural

Poor

4 14 10 1.4 0.63
1 0.0 0.0 0.0 0.0
2 3.1 0.0 0.0 0.0
3 10 6.9 3.8 11

Not
Poor

4 1.7 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0
2 4.9 0.0 0.0 3.0
3 1.4 2.6 2.4 0.0

Urban

Poor

4 5.3 0.0 0.0 0.0

(depending on the solution), while opening only 10 new facilities in all of Mississippi, and

even with δ ≤ 0.02, i.e., while losing only 2% (additional3) revenue. Further, 70 to 80%

of these ~50 blockgroups are majority Black or African American, thus mitigating some of

the disproportionate impact of medical deserts on the Black population. These results are

presented with further details in Section 3.6.

3.1.2 Outline

In Subsection 3.1.3, we discuss related work and previous approaches to portfolios and

facility location problems. In Section 3.2, we present other applications of portfolios for

3That is, the total loss of any new facilities that we open must be within 2% of the total revenue of all
clients.
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conic combinations and interpolating functions. In Section 3.3, we prove Theorem 3.1 (up-

per bound) and Lemma 3.1 (lower bound) for conic combinations. In Section 3.4, we prove

Theorem 3.2 that upper bounds portfolio sizes for monotonically interpolating families. In

Section 3.5 we discuss Fair Subsidized Facility Location (FSFL) and prove Theorem 3.4,

giving the approximation algorithm. We also prove Corollary 3.1 and Theorem 3.5 that

bound portfolio sizes for FSFL. The reduction from k-CLUSTERING and UNCAPACITAT-

EDFACILITYLOCATION to FSFL is presented in Section 5.4, while hardness results for

FSFL are deferred to Section A.1. Experiments on U.S. Census data are discussed in Sec-

tion 3.6, and we conclude in Section 3.8. We introduce notation as it arises in each section.

3.1.3 Related Work

Golovin et al. [23] study Lp norms and their results imply O(1)-approximate portfolios

for Lp norms of size O(log d). Their technique however crucially uses the structure of

Lp norms and does not generalize to other classes that monotonically interpolate between

L1 and L∞ norms. Our technique for portfolio upper bounds for such families closely

resembles the technique of Goel and Meyerson [9], who use it to get portfolios for top-ℓ

norms.

Another well-known related concept is the notion of Pareto frontier approximations

[29]. Pareto frontier of objectives h1, . . . , hd on feasible set D is the set of all points h(x)

for x ∈ D where not all of the function values can be improved, i.e., for all x′ ∈ D, hi(x′) >

hi(x) for some i ∈ [d]. The (1 + ε)-approximate Pareto frontier relaxes this constraint by

factor (1 + ε). [29] give algorithms to compute Pareto frontiers for several problems,

assuming (stronger) bounds 1
u
≤ hi(x) ≤ u for all i ∈ [d] and x ∈ D, and a stronger

feasibility oracle4. In particular, they obtain (1 + ε)-approximate Pareto frontiers of size

O
((

log u
ε

)d)
, and this is nearly-tight. Note that any Pareto-frontier also implies a portfolio,

4They require a polynomial-time oracle to check if the setD∩{x : hi(x) ≤ λi ∀ i ∈ [d]} is non-empty for
given λi, i ∈ [d], while we require only optimizing minx∈D

∑
i∈[N ] λihi(x), which is usually much simpler

for many combinatorial problems. For example, if functions hi represent different path lengths between two
vertices in a graph, then the first oracle is NP-hard while the second reduces to another shortest path problem.
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and therefore, they essentially get a (1 + ε)-approximate portfolio of size O
((

log u
ε

)d)
.

Compared to our result, this is a more restrictive setting, but they obtain a smaller portfolio

than ours.

A long line of works builds on these results to give Pareto frontier approximations for

specific settings [30, 31, 18]. In particular, [31] extend the results of [81] that use weaker

oracles for conic combinations, similar to our result, while still considering the scaling

assumption on individual function values. They construct a Pareto frontier (and therefore a

portfolio) of size O
((

log u
ε

)d)
, and one can show this is d(1 + ε)-approximate. Note that

their result implies that every factor decrease in approximation quality ε′ = ε/γ (for γ > 1)

increases the size of the portfolio exponentially by γd. Our setting on the other hand uses

a weaker assumption5 that hi(x)
hj(x)

≤ u for all x ∈ D, for all i, j ∈ [d] and generalizes their

setting. Further, our Theorem 3.1 improves upon the approximation ratio of [31] by a factor

of d, producing a (1 + ε)-approximate portfolio, without increasing the size exponentially

by around dd. Our portfolio is only of a slightly larger size d ·
(

O(log(du/ε))
ε

)d−1

. The main

technical difference in our approach is that we use a combination of a multiplicative and

additive ε-meshes, as opposed to the above results that use only a multiplicative mesh.

When portfolio size is greater than 1, portfolios for top-ℓ norms may not be portfolios

for Lp norms (see Section A.3 for an example). This is in contrast to portfolios of size

1, where [9] prove that portfolios for top-ℓ norms are portfolios for Lp norms (and all

symmetric monotonic norms).

Lp norm objectives are widely considered in the approximation algorithms literature as

a model for fairness and as interesting theoretical questions [34, 23, 27, 35, 36, 8]. In par-

ticular, [23] study fixed norm objectives including Lp norm objectives for k-CLUSTERING.

Our FSFL model thus generalizes their setting using the subsidy constraint (Section 3.7).

Variants of both UNCAPACITATEDFACILITYLOCATION [72, 82, 71, 80, 83, 84, 73, 85,

86, 87, 88, 74] and k-CLUSTERING [89, 90, 91, 92, 93, 94] are very well-studied in the

5For any function that satisfies 1/u ≤ hi(x) ≤ u, it also satisfies hi(x)/hj(x) ≤ u2 for all x ∈ D.
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Operations Research and Computer Science literature. While all of these algorithms ap-

propriately bound the number/cost of open facilities, they do not bound the total loss of

facilities, which is where our new rounding subroutine is needed.

Many other kinds of fairness criteria in facility location problems are well-studied from

both theoretical and applied perspectives, e.g., see [95, 96, 97, 98, 35]. Most of these

models either fix a fairness criterion or do not discuss how a choice among a suite of

fairness criteria must be made.

3.2 Other Applications

This section showcases several example domains where our portfolio framework applies.

The Fair Subsidized Facility Location model is expanded on in Section 3.5; we present

other applications here.

Bus Routing. School bus routing is a natural multiobjective optimization problem due

to the involvement of several costs (maintaining school buses, fuel costs, etc) and sev-

eral stakeholders (children, parents, schools). This problem presents different conflicting

goals, such as minimizing transportation or fuel costs, the number of buses, and minimizing

the wait times for different groups of students (e.g., students belonging to different racial

groups) [99, 100, 101, 27].

A general approach to dealing with multiple objectives h1, . . . , hd (where h1 is trans-

portation cost, h2 is average student waiting time, h3 is number of buses etc) is to normalize

them so their maximum values maxx∈D hi(x) = 1 for each function i ∈ [d]. Then we de-

fine m > 0 as the smallest value any hi takes at any x ∈ D. Given an algorithm to optimize∑
i∈[d] λihi for any given conic combination λ ≥ 0 of h1, . . . , hd, Theorem 3.1 (Section 3.3)

then yields O(1)-approximate portfolios of size d ·
(
O
(
log( d

m

))d−1 for this setting for the

class C = {
∑

i λihi : λ ∈ Rd
≥0} of all conic combinations.

Finance Portfolios. Consider the following simple model [102, 103] to trade off risk

and rewards in finance portfolio optimization: we are given n assets with mean returns
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µ = (µ1, . . . , µn) ∈ Rn and variance Σ ∈ Rn×n for these returns. We seek to diversify our

investment among these assets to maximize returns (or minimize regret) while minimizing

risk. Formally, we seek a distribution x ≥ 0 with
∑

i xi = 1 over the assets. One objective

is to maximize the return µ⊤x, or equivalently to minimize the reciprocal h1(x) = 1
µ⊤x

.

The second objective – that models risk – is defined as h2(x) :=
√
x⊤Σx.

Let σ1, . . . , σn denote the eigenvalues of Σ, and assume without loss of generality that

µ1 ≤ µ2 ≤ . . . ≤ µn. Then for any feasible x, we have h1(x)
h2(x)

≤ 1
µ1 min(σi)

:= a. Similarly,

for any feasible x, h2(x)
h1(x)

≤ µnmaxi σi := b. Our result (Theorem 3.1) yields an O(1)-

approximate portfolio of sizeO(log(max(a, b))) for the class C = {λ1h1+λ2h2 : λ1, λ2 ≥

0} of conic combinations of h1, h2. Different solutions in the portfolio trade off returns and

risk to different degrees.

This is an example of a more general phenomenon in stochastic optimization, where

the mean E[X] (representing returns) of a nonnegative random variable X is often traded

off against its second moment E[X2] (representing risk or variance). Other examples in-

clude healthcare, where treatment effectiveness and risk can be modeled through the first

and second moments respectively, and inventory management, where managing expected

stockouts (first moment) and maintaining consistent supply (second moment) are often in

conflict with each other. More generally, different moments E[Xp] of X can be traded off

against each other. When X has a finite support in d coordinates, our Theorem 3.2 gives

at most O(log d) solutions while guaranteeing that for all p ≥ 1, one of these solutions

approximates the pth moment E[Xp] within factor 2p of its optimal.

Fair Representation Clustering. In this problem [104, 76], we are given a metric

space (C,dist) on clients C, an integer k, and one of d colors χj ∈ [d] for each client

j ∈ C, and some efficiency constraint. The clients {j ∈ C : χj = t} of color t ∈ [d] are

denoted Γt, and we denote rt =
|Γt|
|C| to be the fraction of clients of color t.

We seek clusters C(1), . . . , C(k) ⊆ C that partition C while satisfying the given effi-

ciency constraint. The goal is to distribute the clients among the clusters in the same ratio
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as their population: for cluster C(i) and color t ∈ [d], the deviation ht(i) for color t in

cluster i is defined as

ht(i) =

∣∣∣∣rt − |C(i) ∩ Γt|
|C(i)|

∣∣∣∣ ,
and we define ht = maxi∈[k] ht(i) to be the maximum deviation for color t among all

clusters. Given an instance of the Fair Representation Clustering problem, we define d

objectives h1, . . . , hd corresponding to the d colors. Previous works have considered the

egalitarian/min-max objective ∥h∥∞ and the utilitarian/min-sum objective ∥h∥1 [104]. The-

orem 3.2 yields an O(1)-approximate portfolio of size O(log d) for all Lp norm objectives.

Risk-averse Stochastic Programming. In standard two-stage stochastic program-

ming, we seek to choose a decision vector x ∈ Dx in stage 1, after which a scenario

ω ∈ Ω is realized according to a given distribution D . At this stage, we must choose an-

other decision vector y ∈ Dy,ω based on the realized scenario ω. The goal is to minimize

ED [Gω(x, y)] for a given convex function G that depends on the realized ω.

The distribution D is often unknown or only partially known ahead of time. In this

case, we must make a risk-averse [105] decision x in the first stage that is effective even

for an adversarial distribution D . Since a single solution must hedge against all possible

realizations of ω, its worst-case performance is inherently limited. Instead, if we are al-

lowed to choose a portfolio of solutions before the scenario ω is revealed to us, then we can

guarantee a good approximation to Gω(x, y) irrespective of what distribution D is. Here,

the class of objectives C = {Gω : ω ∈ Ω} is indexed by scenarios Ω and the feasible set

is the set of decisions Dx. More generally, using portfolios, we can interpolate between

two-stage stochastic and two-stage robust optimization.

3.3 Portfolios for Conic Combinations

In this section, we establish an exponential upper bound (Theorem 3.1) on the portfolio

size for conic combinations of base objectives hi : D → R>0, i ∈ [d]. Then, we show that
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this portfolio size is necessarily exponential in the number d of base objectives.

3.3.1 Portfolio Size Upper Bound

The upper bound result is in terms of the imbalance of the base objective functions, defined

as follows: we say that d positive functions h1, . . . , hd : D → R>0 are u-balanced for some

u ≥ 1 if for all x ∈ D and for all i, j ∈ [d], hi(x)
hj(x)

≤ u.

Theorem 3.1. Let h1, . . . , hd : D → R>0 be positive (base) functions on feasible setD and

some u ∈ R>0 be such that at any point x ∈ D and any two functions hi, hj , it holds that

hi(x)
hj(x)

≤ u. Let C = {
∑

i∈[d] λihi : λ ∈ Rd
≥0} denote the class of all conic combinations of

h1, . . . , hd, and let Oβ be an oracle to obtain a β-approximate solution to argminx∈Dh(x)

for any h ∈ C for given β ≥ 1. Then, a β(1 + ε)-approximate portfolio of size

|Xε| = d ·
(
12 log (4du/ε)

ε

)d−1

can be constructed using at most poly(|Xε|) number of oracle calls, for any ε > 0.

We present the proof for the case β = 1, i.e., when the oracle returns the optimal

solution for each gλ :=
∑

j λjhj . The generalization to the case β > 1 is straightforward

and omitted.

Proof. The plan is as follows: for each i ∈ [d], define the (d−1)-dimensional hypercube

Hi := {λ ∈ [0, 1]d : λi = 1}. We show first that it is sufficient to restrict to convex

combinations gλ =
∑

i∈[d] λihi where λ ∈ H1 ∪ H2 ∪ . . . ∪ Hd by rescaling the highest

coordinate of λ to be 1. We will partition each Hi using an ε-parameterized mesh and

choose a single representative λ∗ for each part of the mesh so that the optimal point x(λ∗) =

argminx∈Dgλ∗(x) for gλ∗ :=
∑

j∈[d] λ
∗
jhj will be a (1 + ε/4)-approximate solution for gλ

for every other λ in the part. Bounding the number of these parts will give the desired

bound on the portfolio size.

To create this mesh, we will find some δ > 0 and partition Hi = H′
i ∪ Ri where
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Figure 3.3: An illustration for the mesh forHi used in the proof of Theorem 3.1.

H′
i = {λ ∈ [δ, 1]d : λi = 1} is a smaller (d − 1)-dimensional hypercube contained within

Hi, and Ri = Hi \ H′
i are the remaining points in Hi. On this smaller hypercube H′

i, we

put the standard multiplicative mesh that partitions it into hyper-rectangles (see Figure 3.3).

That is, we define nested boxes using thresholds {δ, δ(1+ε/4), δ(1+ε/4)2, . . . , 1} for each

coordinate (not equal to i). The number of thresholds is T+1 := log1+ε/4(1/δ)+1 for each

dimension. For every λ ∈ H′
i, we can assign it to one of the T d−1 boxes based on where

the coordinates of λ lie within these thresholds, i.e., λ ∈ [δ(1 + ε/4)k1 , δ(1 + ε/4)k1+1] ×

. . .× [δ(1 + ε/4)kd , δ(1 + ε/4)kd+1], for appropriate k1, . . . , kd.

For the remaining pointsRi = Hi\H′
i, we create an additive mesh. The key observation

is the following: for all λ, µ ∈ Rd
≥0, the optimal point x(λ) := argminx∈Dgλ(x) for the

linear combination gλ =
∑

j λjhj is an approximate solution for gµ, and the quality of this

approximation can be bounded in terms of the L1 norm distance ∥λ − µ∥1. Each µ ∈ Ri

can first be mapped to some λ ∈ H′
i with ∥λ− µ∥1 ≤ 2dδ, and then this λ can be mapped

to the corresponding λ∗ in the multiplicative mesh. As we show later, for the appropriate
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choice of δ, the first step loses approximation factor (1+ε/4). The second step loses factor

(1 + ε/4)2, and thus the final approximation factor is at most (1 + ε/4)3 ≤ 1 + ε for

ε ∈ (0, 1]. We choose δ = ε
4ud

, and we show the remaining claims next.

Approximation guarantee. First, say λ ∈ H′
i. Then, by construction of the multiplica-

tive mesh, we have that any λ∗ in the same part of the mesh satisfies that 1
1+ε/4

≤ λj

λ∗
j
≤

1 + ε/4. This implies that x(λ∗) is a (1 + ε/4)2-approximation for gλ using the optimality

of x(λ∗) for gλ∗:

gλ(x(λ
∗)) =

∑
j

λjhj(x(λ
∗)) ≤ (1 + ε/4)

∑
j

λ∗jhj(x(λ
∗)) (3.1)

≤ (1 + ε/4)
∑
j

λ∗jhj(x(λ)) ≤ (1 + ε/4)2
∑
j

λjhj(x(λ)) (3.2)

= (1 + ε/4)2min
x∈D

gλ(x).

Now, suppose we pick some µ ∈ Ri. Define λ = (max(µ1, δ), . . . ,max(µd, δ)).

Then λ ∈ H′
i. We will show using a sequence of inequalities that x(λ∗) is a (1 + ε/4)3-

approximation for gµ, where as above λ∗ is the representative point of the part of the mesh

that contains λ. To show this, we need the following claim:

Claim 3.1. For all i, j ∈ [d], all λ ∈ Hi and all x ∈ D, we have hj(x) ≤ u · gλ(x).

Proof. We have gλ(x) =
∑

ℓ∈[d] λℓhℓ(x) = ∥λ∥1
∑

ℓ∈[d]
λℓ

∥λ∥1hℓ(x). However,
∑

ℓ
λℓ

∥λ∥1hℓ(x)

is a convex combination of the base objectives h1(x), . . . , hd(x). Since the base objectives

are u-balanced,
∑

ℓ
λℓ

∥λ∥1hℓ(x) ≥
∑

ℓ
λℓ

∥λ∥1

(
1
u
· hj(x)

)
=

hj(x)

u
. This implies that gλ(x) ≥

∥λ∥1 hj(x)

u
, or that hj(x) ≤ u·gλ(x)

∥λ∥1 . Since λ ∈ Hi, the ith coordinate λi = 1, so that

∥λ∥1 ≥ 1.

With this claim, we have the following bound on the performance of x(λ∗) for gµ:

gµ(x(λ
∗)) =

∑
j∈[d]

µjhj(x(λ
∗)) =

∑
j∈[d]

(λj + (µj − λj︸ ︷︷ ︸
≤0

))hj(x(λ
∗))
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≤
∑
j∈[d]

λjhj(x(λ
∗)) = gλ(x(λ

∗)).

However, from Equation 3.1, gλ(x(λ∗)) ≤ (1 + ε/4)2gλ(x(λ)). Using optimality of x(λ)

for gλ,

gλ(x(λ)) ≤ gλ(x(µ)) =
∑
j∈[d]

(µj + (λj − µj))hj(x(µ))

= gµ(x(µ)) +
∑
j

(λj − µj)hj(x(µ)).

Finally, we use Claim 3.1 bounding hj(x(µ)) ≤ u · gµ(x(µ)), so that

gλ(x(λ))− gµ(x(µ)) ≤
∑
j

(λj − µj)× u · gµ(x(µ))

= u · gµ(x(µ))
∑
j

(λj − µj) ≤ u · gµ(x(µ)) · (d · δ)

since 0 ≤ λj − µj ≤ δ for all j. Since δ = ε
4ud

, we get gλ(x(λ)) ≤
(
1 + ε

4

)
gµ(x(µ)).

Together, for ε ∈ (0, 1],

gµ(x(λ
∗)) ≤ gλ(x(λ

∗)) ≤ (1 + ε/4)2gλ(x(λ)) ≤ (1 + ε/4)3gµ(x(µ)) ≤ (1 + ε)gµ(x(µ)).

Portfolio size guarantee. Each Hi is an (d − 1)-dimensional hypercube, and so its

multiplicative mesh has size
(
log1+ε/4(1/δ)

)d−1 ≤
(
12
ε
log(1/δ)

)d−1
=
(
12
ε
log
(
4ud
ε

))d−1.

The portfolio size is upper bounded by the union of the sizes of the meshes:

d×
(
log1+ε/4(1/δ)

)d−1 ≤ d

(
12

ε
log

(
4ud

ε

))d−1

.
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3.3.2 Portfolio Size Lower Bound

We show that the portfolio size for conic combinations C = {
∑

j∈[d] λjhj : λ ≥ 0} of base

functions h1, . . . , hd must be exponential in d in some cases. In fact, our base functions

hi, i ∈ [d] will be linear.

Lemma 3.1. For all d ≥ 1, there exists a set D and base functions h1, . . . , hd on D such

that any 2-approximate portfolio for the class C = {
∑

j∈[d] λjhj : λ ≥ 0} of conic combi-

nations of base functions must have size ≥ 2d − 1.

Proof. We specify the base functions first: hi(x) = xi for all x ∈ Rd and i ∈ [d]

(i.e., the ith coordinate). Given a set S ⊆ [d], let χS ∈ {0, 1}d denote its characteristic

vector. Then for all S ̸= ∅, the function hS(x) := χ⊤
Sx ∈ C. We will construct D =

{x(S) : S ̸= ∅} with |D| = 2d − 1 such that for each S, there will be a unique minimizer

x(S) = minx∈D hS(x) and further that for all T ̸= S, x(T ) will not be a 2-approximation

for hS .

Fix constants a = 3 and b = 2dad that we will use to define the vectors x(S). For all

T ̸= ∅, define x(T ) as follows:

x(T )i =


a|T | if i ∈ T,

b if i ̸∈ T.

Given some S, T ̸= ∅, we get that

hS(x(T )) =
∑

i∈S∩T

a|T | +
∑
i∈S\T

b = |S ∩ T |a|T | + b|S \ T |.

In particular, hS(x(S)) = |S|a|S|. We now show that for all T ̸= S, hS(x(T )) >

2hS(x(S)).

Case I: S ⊊ T . Then hS(x(T )) = |S|a|T |. Since S ̸= T , we must have |T | > |S| and

so hS(x(T )) > a · |S|a|S| = 3 · hS(x(S)).
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Case II: S \ T ̸= ∅. Then hS(x(T )) > b = 2dad ≥ 2|S|a|S| = 2hS(x(S)). This

completes the proof.

3.4 Portfolios for Interpolating Functions

In this section, given base objective functions h1, . . . , hd : D → R≥0 over a domain D of

feasible solutions, we prove Theorem 3.2 that obtains portfolios for classes C of functions

that interpolate monotonically between the L1 norm objective ∥h∥1 := h1 + . . . + hd and

the L∞ norm objective ∥h∥∞ := maxi∈[d] hi.

Formally, given reals a ≤ b, the class C = {gλ : λ ∈ [a, b]} of objectives on D

interpolates monotonically between ∥h∥1 and ∥h∥∞ if (1) ga = ∥h∥1, (2) gb = ∥h∥∞, and

(3) gλ is non-increasing with λ, i.e., for all µ ≥ λ and x ∈ D, we must have gλ(x) ≥ gµ(x).

Examples of such a class include Lp norm functions
{
∥h∥p :=

(∑
i∈[d] h

p
i

)1/p
: p ≥ 1

}
,

convex combinations of ∥h∥1 and ∥h∥∞, and top-ℓ norm functions for ℓ ∈ [d] that sum the

ℓ highest coordinates.

We show that given an oracle to find a β-approximate solution for any given gλ ∈ C,

we can obtain a β(1 + ε)-approximate portfolio of size O
(
log βd

ε

)
in a polynomial number

of oracle calls.

Theorem 3.2. Let h1, . . . , hd : D → R≥0 be d nonnegative functions on feasible setD, and

denote h = (h1, . . . , hd). Let C denote a class of objectives that interpolate monotonically

between ∥h∥1 and ∥h∥∞, and let Oβ be an oracle that gives a β-approximate solution to

argminx∈Dh(x) for any h ∈ C. There exists an algorithm that given any ε ∈ (0, 1], finds

a β(1 + ε)-approximate portfolio of size at most O
(
log βd

ε

)
in poly(d, 1

ε
) number of oracle

calls to Oβ .

Given this result, one might naturally ask if portfolios for one class of monotonically

interpolating norms (e.g., top-ℓ norms) are also portfolios for another such class (e.g., Lp

norms); indeed, a portfolio of size 1 that is α-approximate for top-ℓ norms is α-approximate
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for Lp norms [9]. In Section A.3, we show that this is false for portfolios of size > 1. That

is, there exist portfolios for top-ℓ norms which are not approximate portfolios for Lp norms.

Proof of Theorem 3.2. Denote the class C = {gλ : λ ∈ [a, b]}. We assume we are given

an oracle to obtain β-approximation for gλ overD for any given λ ∈ [a, b]. In a polynomial

number of oracle calls, we will find a β(1 + ε)-approximate portfolio for C. The portfolio

size is S + 1 where S = log1+ε(βd).

We construct a sequence of λ values a = λ(0) < λ(1) < . . . < λ(S) = b such that the

set X of β-approximate solutions for the S + 1 objective functions gλ(0), gλ(1), . . . , gλ(S)

forms the desired portfolio. For λ ∈ [a, b], let OPTλ := minx∈D gλ(x) be the optimal

value for gλ, with x(λ) denoting the β-approximate solution returned by the oracle. The

objective value of this solution for gλ is denoted ALGλ. Since the oracle is β-approximate,

ALGλ ≤ β ·OPTλ.

We can assume without loss of generality that ALGλ is non-increasing with λ: indeed,

given µ > λ, the cost of x(λ) for gµ is gµ(x(λ)) ≤ gλ(x(λ)) = ALGλ by the monotonicity

assumption. Therefore, if gµ(x(µ)) > gλ(x(λ)), we can use x(λ) instead of x(µ) with

better a objective value for gµ.

Next, for λ ∈ [a, b], denote by λ′ the minimum value of µ ∈ [a, b] such that ALGλ

(1+ε)
≥

ALGµ. Intuitively, we take a ‘step’ of size (1+ε) in the objective value. If no such µ exists

(i.e., when ALGb >
ALGλ

1+ε
), define λ′ = b. Construct portfolio X as follows: initially set

λ(0) = a and i = 0. While λ(i)′ < b, keep taking (1+ε)-steps, i.e., setting λ(i+1) = λ(i)′

and increasing the counter i. Suppose λ(0), . . . , λ(S) is the sequence of λ values generated

by this algorithm. The algorithm outputs the corresponding β-approximations, i.e., X =

{x(λ(i)) : i ∈ [0, S]}.

We claim that for each i ∈ [0, S − 1] and µ ∈ [λ(i), λ(i + 1)), solution x(λ(i)) is a

β(1 + ε)-approximation to gµ. This is sufficient to prove the approximation guarantee of

the portfolio. Since gµ ≤ gλ(i), the cost of x(λ(i)) for gµ is gµ(x(λ(i)) ≤ gλ(i)(x(λ(i)) =

ALGλ(i). Now, by definition of λ(i + 1), we have ALGµ ≥
ALGλ(i)

1+ε
, so that this cost is at
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most (1 + ε)ALGµ ≤ (1 + ε)β ·OPTµ. This proves the approximation guarantee for X .

We now prove that |X| = O(log1+ε(βd)). By construction, ALGλ(i+1) ≤ ALGλ(i)/(1+

ε), i.e., the value of ALGλ(i) decreases by factor ≥ (1 + ε) in each step (except possibly

the last). Therefore, the number of steps S is bounded by log(1+ε)
ALGa

ALGb
. It is now sufficient

to prove that ALGa ≤ (d · β) · ALGb. To see this claim, since x(a) is a β-approximation

to ga = ∥h∥1, we have ALGa = ∥h(x(a))∥1 ≤ β · ∥h∥1(x(b)). Next, since ∥h(x(b))∥1 =

h1(x(b)) + . . . + hd(x(b)) ≤ d · ∥h(x(b))∥∞, we get ALGa ≤ βd · ALGb since gb is the

L∞ norm.

3.5 Fair Subsidized Facility Location

In this section, we construct a polynomial-time approximate oracle (and consequently port-

folios) for the Fair Subsidized Facility Location (FSFL) problem, where the input consists

of (1) a metric space (X,dist) on set X = C ∪ F of clients C and potential facilities

F , (2) nonnegative operating costs c : F → R≥0 for facilities, (3) nonnegative revenues

r : C → R≥0 for clients, (4) subsidy parameter δ > 0, and (5) an objective function

g : RC
≥0 → R on client distances that is convex and sublinear, i.e., for all τ, τ ′ ∈ RC

≥0 and

α ≥ 0, we must have g(ατ + τ ′) ≤ αg(τ) + g(τ ′). A feasible solution is a pair (F ′,Π)

where (1) F ′ ⊆ F is a set of open facilities and (2) Π : C → F ′ are client assignments to

open facilities.

The mild conditions of convexity and sublinearity on the objective lead to a rich class

of objectives: it includes classical objectives such as the sum of client distances and the

maximum client distance, as well as norms of client group distances when client groups

are specified. In particular, this includes the Lp norms of client group distances, where

we are given d groups through fractional group memberships µj,s ≥ 0 for each client

j ∈ C and each group s ∈ [d]. For solution (F ′,Π), the group distance of the sth group

is h(Π)
s :=

∑
j∈C µj,sdistj,Π(j) and the Lp norm objective for given p ≥ 1 is to minimize

∥h(Π)∥p :=
(∑

s∈[d](h
(Π)
s )p

)1/p
. Formally, our result states the following:
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Table 3.2: A summary of various steps in the rounding algorithm for FSFL.

Solution x y
Distance

approximation
Subsidy

(x, y) fractional fractional 1 δyα-PointRounding (Lemma 3.2) (Lemma 3.2)

(x, y) fractional fractional 4 ·max
(
1, 1δ
)

2δyRoundToIntegralFacilities (Lemma 3.4) (Lemma 3.5)

(x′, y′) fractional integral 20 ·max
(
1, 1δ
)

2δyIntegralAssignment (Lemma 3.6) (Lemma 3.6)

(x′′, y′) integral integral 20 ·max
(
1, 1δ
)

2δ + θ

Theorem 3.4. There exists a polynomial-time algorithm that given an instance of Fair

Subsidized Facility Location (FSFL) that satisfies θ-small revenues assumption and a sub-

sidy δ > 0, returns a (2δ + θ)-subsidized solution whose objective value is within factor

O
(
max

(
1, 1

δ

))
of the optimal δ-subsidized solution.

We start by writing a convex relaxation for the problem. We represent feasible solutions

through characteristic vectors: the set F ′ ⊆ F of open facilities is represented by the binary

vector y ∈ {0, 1}F such that yf = 1 if and only if f ∈ F ′. Similarly, an assignment

Π : C → F ′ is represented by the vector x ∈ RC×F such that xj,f = 1 if and only if

Π(j) = f for all clients j ∈ C and f ∈ F .

These vectors satisfy two natural constraints: (1) a client is only assigned to an open

facility, i.e., xj,f ≤ yf for all j ∈ C, f ∈ F and (2) each client j ∈ C must be assigned to

some facility, or
∑

f∈F xj,f = 1. This is useful for writing convex relaxations [89, 71] of

the problem, where we instead allow xj,f and yf to be in [0, 1] for each client j ∈ C and

facility f ∈ F under the above constraints. Further, the distance τj of a client j ∈ C to its

assigned facility can be written as
∑

f∈F xj,fdistj,f .

We introduce a variable ℓf for each f ∈ F to denote the loss of the facility f , and

impose the constraint ℓf ≥ max
(
0, yfcf −

∑
j∈C xj,frj

)
. That is, the ℓf = 0 when yf =

0 or when f is not open. When f is open but profitable, i.e., revenue
∑

j∈C xj,frj of
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clients assigned to it exceeds the operating cost cfyf , then loss ℓf = 0, otherwise ℓf is the

difference in the operating cost and revenue. The final constraint is the δ-subsidy constraint

that bounds the total loss
∑

f∈F ℓf to be at most δ
∑

j∈C rj .

min g(τ) (IP)

s.t. τj =
∑
f∈F

xj,fdistj,f , ∀ j ∈ C, (3.3)

∑
f∈F

xj,f = 1, ∀ j ∈ C, (3.4)

xj,f ≤ yf , ∀ j ∈ C, f ∈ F, (3.5)

ℓf ≥ cfyf −
∑
j∈C

xj,frj, ∀ f ∈ F, (3.6)

∑
f∈F

ℓf ≤ δ
∑
j∈C

rj, (3.7)

ℓf ≥ 0, ∀ f ∈ F, (3.8)

x ∈ {0, 1}C×F , y ∈ {0, 1}F .

Due to the convexity of g, we can relax the integrality constraints on x, y to get a convex

program and obtain an optimal fractional solution (x, y, ℓ, τ) in polynomial time. Since ℓ

and τ can be determined using x, y, we will often omit them and denote the solution as

(x, y). When both x, y are integral, we call (x, y) an integral solution. In this case, (x, y)

corresponds to a feasible solution (F ′,Π) of the original problem. Since g is sublinear, we

have that g(γτ) ≤ γg(τ) for all γ > 0.

Given the optimal fractional solution (x, y) to the convex program, in Subsection 3.5.1

we round it to a solution (x′, y′) where y′ is integral (but x′ may be fractional) using algo-

rithms α-PointRounding and RoundToIntegralFacilities respectively. Then,

we round (x′, y′) to an integral solution (x′′, y′) in Subsection 3.5.2, using a subroutine for

the generalized assignment problem from [106]. Table 3.2 illustrates these steps in the

rounding algorithm. Subsection 3.5.3 discusses portfolios for FSFL.
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3.5.1 Finding an Integral Set of Facilities

The first step in our rounding procedure is the α-PointRounding subroutine from [71].

For appropriately chosen α ∈ (0, 1) and fractional optimal (x, y), this algorithm removes

the assignment of clients j ∈ C to facilities that are the farthest and hold at most (1 − α)

fraction of the assignment for j. The algorithm then rescales the y variables by 1/α

while maintaining feasibility to the convex relaxation of Equation IP. We state the al-

gorithm in Subsection A.2.1 for completeness. Here, we state the formal guarantees of

α-PointRounding for facility location. Given a vector ∆ ∈ RC
≥0, we say that a frac-

tional solution (x̂, ŷ) is ∆-close if for all clients j ∈ C and all facilities f ∈ F such that

x̂j,f > 0, we have distj,f ≤ ∆j (note that ∆j need not all be the same value for all

j). Note that for any fractional solution (x, y), the actual distance distj,f of a client j to

any facility f that they are fractionally matched to could be much larger than the expected

distance τj =
∑

f ′∈F distj,f ′xj,f ′ that the convex program pays for. We show in the fol-

lowing lemma that this can be bounded, while violating the subsidy constraint by a factor

≤ 2:

Lemma 3.2. The fractional solution (x, y) output by α-PointRounding(x, y) (Algo-

rithm 13) satisfies:

1. It is ∆-close where ∆j ≤ 4max
(
1, 1

δ

)
τj for all j ∈ C, where τj =

∑
f xj,fdistj,f

is the expected distance in (x, y). That is, for any facility f ,

xj,f > 0 =⇒ distj,f ≤ 4max

(
1,

1

δ

)
τj.

2. The total loss of (x, y) is at most fraction 2δ of the total revenue, i.e.,
∑

f∈F ℓf ≤

2δ
∑

j∈C rj .

Crucially, Part 1 states that a client j can now be assigned to any facility f such that

xj,f > 0 while being within factor 4max
(
1, 1

δ

)
of its original distance τj in the fractional
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solution (x, y). This part of the lemma follows similar arguments to [71]. Part 2 of the

lemma requires tracking the losses from the original solution (x, y) to the output solution

(x, y); we include details of the proof in Section A.2. Hereafter, we denote this set of

‘feasible’ facilities for client j ∈ C as

feasj := {f ∈ F : xj,f > 0}.

Lemma 3.2 implies that if we open a facility in feasj for each client j ∈ C and assign j to

this facility, then we obtain a solution where the objective g is within a factor 4max
(
1, 1

δ

)
of the relaxed optimal of Equation IP (since g is sublinear). However, opening a (poten-

tially) different facility for each client can significantly increase the total operating cost

of open facilities, and therefore the total loss. Therefore, we need to open fewer facilities

while still ensuring that clients are not assigned too far away.

Algorithm RoundToIntegralFacilities. Our next algorithm (Algorithm 2)

rounds the ∆-close fractional solution (x, y) to solution (x′, y′) with integral facilities,

while increasing the client distances by factor ≤ 5 (i.e., (x′, y′) is 5∆-close), while not

increasing the losses. Our strategy is as follows: we will first find a set of core clients

C∗ ⊆ C. Next, we will open a single facility f(j∗) in each feasj∗ for each core client

j∗ ∈ C∗. This is the integral solution y′ for open facilities. These core clients and open

facilities satisfy the following two key properties simultaneously:

1. For core clients j∗ ∈ C∗, the sets feasj∗ of feasible facilities have to be mutually

disjoint.

2. For each client j ∈ C, there exists some core client j∗ ∈ C∗ such that the open

facility f(j∗) is within distance 5∆j of j.

These two properties are formalized in Lemma 3.3. We will then assign clients fractionally

to y′ while maintaining two properties:
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Algorithm 1 CoreClients(G,∆)

input: an undirected graph G = (C,E) on clients C and a function ∆ : C → R≥0

output: (C∗,paths) where C∗ ⊆ C is a set of core clients and pathsj is a path in
G from j to some core client j∗ ∈ C∗ for each j ∈ C
given a path p = j0j1 . . . jT for jt ∈ C in G, define the ∆-length of p as ∆(p) =∑T

t=0∆jt

1: if G is empty, return (∅, ∅)
2: choose core client j∗ = argminj∈C∆j , initialize arborescence A rooted at j∗ and
paths(j∗) = j∗

3: call edge jj′ ∈ E growing if j ̸∈ A, j′ ∈ A, and ∆j ≥ ∆(pathsj′)
4: while there is a growing edge jj′ ∈ E do
5: add directed edge j′ → j to A
6: set pathsj to be the path from j to j∗ in A

7: obtain (C∗,paths′) = CoreClients(G \ A,∆) for the remaining instance
8: return ({j∗} ∪ C∗,paths ∪ paths′)

1. Bounded Losses: Since sets feasj∗ are disjoint for core clients j∗, clients j that are

fractionally assigned to any facility in feasj∗ can be reassigned to f(j∗). Thus, the

revenue from these clients pays for the facility f(j∗).

2. Bounded Distances: From the second property above for core clients, each client

j can be assigned to some f(j∗) while keeping the objective g within factor 5 ×

4max(1, 1
δ
) of the optimal objective.

Together, these two steps give us the required integral set of facilities and the corresponding

fractional assignments.

Finding Core Clients. For the first step of finding the core set of clients, we present

Algorithm CoreClients. For expositional convenience, we first construct the graph

G = (C,E) on clients C as follows: there is an edge jj′ ∈ E if and only if feasj ∩

feasj′ ̸= ∅, and every vertex (client) j ∈ C is associated with its ∆j value. The ∆-length

of a simple path p = j0j1 . . . jT in G for clients jt ∈ C is defined as the sum
∑T

t=0∆jt of

∆-values along the path. Algorithm CoreClients selects a subset C∗ ⊆ C that form an

independent set in the graph G, while ensuring a small ∆-length path from any non-core
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Figure 3.4: An example to illustrate Algorithm 1. (left) The graph G = (C,E) with
∆ values for vertices. Initially, the algorithm chooses core client a = argminj∈C∆j and
forms an arboresence rooted at a on clients {a, b, c, d, f}. Then, the algorithm chooses core
client g and forms the arborescence on clients {g, h}, and finally, the algorithm chooses
the core client i. (right) The core clients C∗ (shaded) and paths, represented through
arborescences rooted at the core clients.

client to some core client. This is formalized in the following lemma:

Lemma 3.3. Given the graph G = (C,E) on clients C and ∆ : C → R≥0, Core

-Clients finds a subset C∗ ⊆ C and pathsj for each j ∈ C to some j∗ ∈ C∗ such that

1. C∗ is an independent set of vertices in G.

2. For each client j ∈ C, the path pathsj starts at j and ends at some j∗ ∈ C∗, and

has ∆-length at most ∆(pathsj) ≤ 2∆j .

3. For all neighbors j ∈ C of a core client j∗ ∈ C∗, we have ∆j ≥ 1
2
∆j∗ .

Before we discuss the proof, at a high level, algorithm CoreClients decomposes the

graph G into a set of arborescences that are rooted trees at each core client, while ensuring

that each non-core client has a directed path to some core client. This is done by recursively

choosing the client j∗ with the smallest ∆j∗ value (these are the core clients) and adding

all ‘nearby’ clients to obtain the arborescence rooted at j∗. That is, for each client j in this

arborescence rooted at j∗, the ∆-length of the path from j to j∗ is at most 2∆j .

We then delete the subgraph spanned by the arborescence and recurse on the remaining

components of the graph. The complete description is given in Algorithm 1. We are now

ready to prove Lemma 3.3.
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Proof. (Part 1) At any recursive call on a connected component H , a core client j∗ must

have the smallest ∆j∗ value in the current graph H . This means that each neighbor j in

the current graph must belong to its arborescence, by trivially satisfying ∆-length of the

∆(pathsj) = ∆j + ∆j∗ ≤ 2∆j . Note that this also implies that any subsequent core

client cannot be adjacent to j∗.

(Part 2) Clearly, the algorithm exhaustively assigns each client j ∈ C to the arbores-

cence A rooted at some core client j∗ ∈ C∗. Suppose j was added to A through the edge

jj′. Then, by construction, we have that ∆j ≥ ∆(pathsj′). Since pathsj consists of

edge jj′ followed by pathsj′ , we have ∆(pathsj′) = ∆(pathsj′) + ∆j ≤ 2∆j .

(Part 3) Consider edge jj∗ ∈ E with core client j∗ ∈ C∗ and j ∈ C. From Part

1, j ̸∈ C∗. Suppose first that j is in the arborescence of j∗. In this case, by Part 2,

∆j +∆j∗ = ∆(pathsj) ≤ 2∆j , so that ∆j∗ ≤ ∆j ≤ 2∆j .

Next, suppose that j is not in the arborescence of j∗. Then, j must have been added

to the arborescence A of some j∗1 chosen in C∗ before j∗, but this arborescence did not

include j∗. This can only happen if the ∆-path length ∆(pathsj) > ∆j∗ . From Part 2,

2∆j ≥ ∆(pathsj) ≥ ∆j∗ , completing the proof.

Note that this lemma gives us our key properties discussed earlier: Part 1 implies that

feasj∗1
∩ feasj∗2

= ∅ for all core clients j∗1 , j
∗
2 ∈ C∗ by definition of the graph G.

Using Part 2, for all clients j, there is some core client j∗ such that pathsj ends at j∗ and

therefore ∆j∗ ≤ ∆(pathsj)−∆j ≤ ∆j , so that distj,f(j∗) ≤ distj,j∗+distj∗,f(j∗) ≤

4∆j +∆j∗ ≤ 5∆j .

Integral Facilities with Fractional Assignments. Taking the ∆-close fractional solution

(x, y), we will return a 5∆-close solution (x′, y′) with y′ integral using the following Al-

gorithm RoundToIntegralFacilities (Algorithm 2). Using CoreClients as a

subroutine, the algorithm runs in two phases, where Phase 1 opens the cheapest facility

f(j∗) ∈ feasj∗ for each core client j∗ ∈ C∗ and partially assigns clients to bound the
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Algorithm 2 RoundToIntegralFacilities(x, y)
input: ∆-close fractional solution (x, y)
output: 5∆-close solution (x′, y′) where y′ is integral (x′ may be fractional)

1: for each client j ∈ C, define feasj := {f ∈ F : xj,f > 0}
2: form graph G = (C,E) on vertex set C with edge j1j2 ∈ E if and only feasj1 ∩
feasj2 ̸= ∅

3: (C∗,paths)← CoreClients(G,∆)
Phase 1: open facilities and partially assign clients

4: for j∗ ∈ C∗ do
5: let f(j∗) := argminf∈feasj∗cf be the cheapest facility in feasj∗

6: set y′f(j∗) = 1, and assign xj∗,f(j∗) = 1 ▷ Open facility and assign
7: for each neighbor j of j∗ in G do
8: set x′j,f(j∗) =

∑
f∈feasj∗ xj,f to be the contribution of j to facilities in feasj∗

Phase 2: fully assign clients
9: for each client j ∈ C that is partially assigned, i.e.,

∑
f x

′
j,f < 1 do

10: let j∗ ∈ C∗ be the endpoint of path paths(j)
11: increase x′j,f(j∗) ← x′j,f(j∗) +

(
1−

∑
f x

′
j,f

)
▷ Fully assign j

12: set any undefined x′j,f and y′f to 0
13: return (x′, y′)

losses of these facilities as described above. Each client’s contribution to any facility in

feasj∗ is assigned to the chosen f(j∗). Phase 2 then assigns the remainder contribution of

the clients to the open facility f(j∗) where j∗ is the end of the path pathsj obtained using

CoreClients. This keeps their distances to assigned facilities bounded.

In Phase 1, for each core client j∗ ∈ C∗, the cheapest facility f(j∗) ∈ C∗ is opened.

For each neighbor j of j∗ in G, we fractionally assign j to f(j∗), setting x′j,f(j∗) to be the

contribution of j to facilities in feasj∗ , that is, x′j,f(j∗) =
∑

f∈feasj∗ xj,f . First, we show

that RoundToIntegralFacilities returns a valid fractional solution (x′, y′). It is

clear that (x′, y′) satisfies Equation 3.5 in the relaxation of Equation IP. It is sufficient to

show that
∑

f x
′
j,f ≤ 1 for all j ∈ C, since in Phase 2 (line 11) we ensure that

∑
f x

′
j,f ≥ 1

for all j ∈ C.

Claim 3.2. For each client j ∈ C,
∑

f x
′
j,f ≤ 1 at the end of Phase 1 in Algorithm

RoundToIntegralFacilities.
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Proof. feasj∗1
and feasj∗2

are disjoint for all distinct core clients j∗1 , j
∗
2 ∈ C∗. Therefore,

at the end of Phase 1,

∑
f

x′j,f =
∑
j∗∈C∗

x′j,f(j∗) =
∑
j∗∈C∗

∑
f∈feasj∗

xj,f ≤
∑

f∈feasj

xj,f = 1.

Our next lemma bounds the increase in client distances:

Lemma 3.4. For each client j ∈ C and facility f ∈ F , if x′j,f > 0 then distj,f ≤ 5∆j .

Proof. Each client j ∈ C is potentially (fractionally) assigned to some facilities in Phase 1

and to at most one facility in Phase 2.

Phase 1. Suppose j is fractionally assigned to some f(j∗) for j∗ ∈ C∗ in Phase 1. Then

j is a neighbor of j∗, so there is some f ∈ feasj ∩feasj∗ , that is, xj,f > 0 and xj∗,f > 0.

Algorithm CoreClients guarantees that ∆j ≥ 1
2
∆j∗ in this case (Lemma 3.3), so that

distj,f(j∗) ≤ distj,f + distj∗,f + distj∗,f(j∗)

≤ ∆j +∆j∗ +∆j∗ ≤ ∆j + 2∆j + 2∆j = 5∆j.

Phase 2. j is assigned to f(jT ) for jT ∈ C∗ where paths(j) = jj1j2 . . . jT−1jT is a

path inG. Algorithm CoreClients guarantees (Lemma 3.3) that ∆j1+∆j2+. . .+∆jT ≤

∆j , and therefore the distance of j to f(jT ) is at most

2(∆j1 +∆j2 + . . .+∆jT ) + ∆j ≤ 3∆j.

Our next lemma shows that the total loss of unprofitable facilities in (x′, y′) is at most

the total loss of unprofitable facilities in (x, y):

Lemma 3.5. The total loss for the rounded solution (x′, y′) returned by RoundTo

-IntegralFacilities(x, y) is
∑

f∈F ℓ
′
f ≤

∑
f∈F ℓf .

The proof is based on the following idea: we only open one facility f(j∗) for each core
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client j∗ ∈ C∗. Further, the set C∗ is an independent set in the graph G = (C,E). Recall

that for each j∗ ∈ C∗, its neighbors in G contribute some revenue to f(j∗) in Phase 1 of

the algorithm. We show that since f(j∗) is chosen as the cheapest facility in feasj∗ , this

contribution from the neighbors of j∗ is sufficient to offset the operating cost of f(j∗), up

to the loss incurred in the fractional solution (x, y). We defer the proof of this lemma to

Subsection A.2.2.

Note that since the total loss
∑

f ℓf of (x, y) is at most 2δ
∑

j∈C rj (Lemma 3.2), we

have from the above lemma that
∑

f ℓ
′
f ≤ 2δ

∑
j∈C rj as well. Now that we have a solution

(x′, y′) with integral open facilities {f ∈ F : y′f = 1}, it remains to round the fractional

assignments x′.

3.5.2 Finding Integral Assignments

In our final rounding step, we find integral assignments for the 2δ-subsidized fractional

solution (x′, y′) with integral y′ and subsidy at most 2δ. This rounding procedure gives an

integral solution (x′′, y′) but increases the subsidy to at most 2δ + θ. This proof crucially

uses the θ-small revenues assumption, i.e., rj ≤ θcf for all clients j ∈ C and facilities

f ∈ F . We have the following more general lemma:

Lemma 3.6. There exists a polynomial-time rounding algorithm that given a δ′-subsidized

∆′-close fractional solution (x′, y′) where y′ is integral, obtains a (δ′ + θ)-subsidized ∆′-

close integral solution (x′′, y′) for any instance of FSFL that satisfies the θ-small revenues

assumption for given θ > 0.

To prove this lemma, we consider a parallel scheduling problem where the machines are

open facilities F ′ = {f ∈ F : y′f = 1}, jobs are clients C, and processing time pj,f = rj

if x′j,f > 0 and pj,f = ∞ otherwise (i.e., job j cannot be assigned to machine f ). Denote

the set of clients that can be assigned to f as Cf := {j ∈ C : x′j,f > 0}. Our proof uses

[106]’s scheduling algorithm as a subroutine, stated in terms of our problem:
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Lemma 3.7 ([106]). There exists a polynomial-time algorithm that given a fractional

schedule x′, returns an integral schedule x′′ where (1) each job/client j is assigned to

exactly one facility/machine in the support of x′ and (2) for each machine f ∈ F ′, the total

load
∑

j∈Cf
x′′j,frj on f under x′′ is at most the total load

∑
j∈Cf

x′j,frj on f under x′, plus

the load rj(f) of at most one extra job j(f) ∈ Cf , i.e.,

∑
j∈Cf

x′′j,frj ≤ rj(f) +
∑
j∈Cf

x′j,frj.

Lemma 3.7 allows us to round the fractional assignment to an integer assignment, while

adding revenue from a single client to each facility. However, to bound the total loss in

this assignment to prove Lemma 3.6, one needs additional algebraic arguments, which are

deferred to Subsection A.2.3.

With Lemma 3.6 in hand, we are ready to complete the proof of our main Theorem 3.4

that gives the bicriteria oracle for FSFL:

Proof of Theorem 3.4. Denote the optimal (integral) δ-subsidized solution as (x∗, y∗) with

objective value g(τ ∗). Since (x, y) is the optimal fractional solution, (1) it must be δ-

subsidized and (2) the objective value g(τ) ≤ g(τ ∗), where τ ∈ RC is the vector of client

distances for (x, y).

By Lemma 3.2.1, the solution (x, y) returned by algorithm α-PointRounding is(
4max

(
1, 1

δ

)
τ
)
-close. The solutions (x′, y′) and (x′′, y′) that give integral facilities and

integral assignment respectively are both
(
5× 4 ·max

(
1, 1

δ

)
τ
)
-close by Lemma 3.4 and

Lemma 3.6 respectively. Therefore, since g is sublinear, for distance vector τ ′′ for integral

solution (x′′, y′),

g(τ ′′) = O

(
max

(
1,

1

δ

))
g(τ) = O

(
max

(
1,

1

δ

))
g(τ ∗).

The solution (x, y) returned by α-PointRounding is 2δ-subsidized by Lemma 3.2.2.

The solutions (x′, y′) returned by RoundToIntegralFacilities is also 2δ-subsidized
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by Lemma 3.5, and the solution (x′′, y′) is (2δ + θ)-subsidized by Lemma 3.6.

To summarize, we presented a bicriteria oracle for approximating the facility location

with subsidies, by step-wise rounding the fractional optimal solution while ensuring that

the total losses are bounded by a fraction of the revenue and that the client distances do not

blow up by too much.

3.5.3 Portfolios for Fair Subsidized Facility Location

In this section, we obtain polynomial-time portfolios for FSFL for objectives in C = Lp

norms of group distances. Using Theorem 3.2, we can reduce the problem of obtaining

portfolios to the problem of designing approximation oracles, and using Theorem 3.4, we

get a bicriteria oracle for FSFL, as discussed in the previous section. Putting these together,

we get:

Corollary 3.1. There exists a polynomial-time algorithm that given an instance of Fair

Subsidized Facility Location (FSFL) with d client groups that satisfies θ-small revenues

assumption and a subsidy parameter δ > 0, obtains a portfolio P of sizeO
(
log
(

d
min(1,δ)

))
such that

1. each solution in the portfolio is (2δ + θ)-subsidized, and

2. for each p ≥ 1, there is a solution in the portfolio with objective value within factor

O
(
max

(
1, 1

δ

))
of the optimum δ-subsidized solution for the Lp norm objective.

Note that the portfolio size grows logarithmically in the number of client groups d.

Therefore, even with intersectional groups, the number of solutions in the portfolio grows

slowly. For example, if we have 2 categories for urbanization, 2 categories for income

levels, and 4 categories for geographical region, this still results in only d = 16 groups.

Similarly, for δ < 1, the dependence on 1/δ is logarithmic, and for δ ≥ 1 the portfolio size

is independent of δ. Further, these are theoretical worst-case bounds, and in practice, the

portfolio sizes are much smaller (see Section 3.6).
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Next, we present a lower bound for portfolios for FSFL, which shows that our results are

order-optimal. That is, one cannot hope to construct a smaller O(1)-approximate portfolio

for this problem.

Theorem 3.5. There exist instances of FSFL with δ > 1 where any O(1)-approximate

portfolio for the class C of Lp norms of group distances with d client groups must have size

Ω(log d).

The main idea of the proof is as follows: for all large enough d and for all constants

α > 1, we give an instance of FSFL where any α-approximate portfolio size must be

≃ log2α d. Specifically, we construct an instance with ≃ log2α d distinct feasible solutions.

Further, we give a set of ≃ log2α d norms such that for each fixed Lp norm in this set,

exactly one of the ≃ log2α d solutions is optimal and every other solution is not an α-

approximation. Thus, any portfolio for all Lp norms must contain each of the ≃ log2α d

solutions. We formalize the proof now.

Proof. For all large enough d and for all constant α > 1, we give an instance of FSFL

where any α-approximate portfolio size must be 1
4
log2α d = Ω(log2α d). Fix d. Each client

will be in their own unique group, so the number of clients |C| = d. Denote γ = 2α, and

denote N to be the highest integer that satisfies 1 +N(γ2N + 1) = d; then N ≥ 1
4
logγ d.

Our metric space is a star graph with central vertex a0 and leaf vertices a1, . . . , aN with

unit distances between a0 and ai for all i ∈ [N ]. A facility can be opened at any vertex

(including the central vertex a0) with operating cost c = 1.

The clients are specified as follows. While each client is in their own unique group, the

group distances will be weighted, i.e., client in group s ∈ [d] will have a weight µs so that

the Lp norm objective for traveled distances τs, s ∈ [d] is
(∑

s∈[d](µsτs)
p
)1/p

.

• There is a single client at a0 with weight γN2 and revenue 0.

• At ai, there are γ2N + 1 clients, each with revenue r = 1
γ2N+1

. The first client has

weight γi while the other γ2N clients have weight γ−i each.
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Set subsidy δ = 1
2N

. Note that since the sum of revenues is r × (γ2N + 1) × N = N

and since each of the N + 1 facilities has an operating cost c = 1, we can open at most N

facilities, i.e., a facility must not be open at some ai, i ∈ [0, N ], and all clients at ai must

travel a unit distance to some other open facility.

If no facility is open at a0, the weighted group distance vector is τ (0) = (γN
2
, 0, . . . , 0).

If a facility is not open at ai for i ∈ [N ], the weighted group distance vector is τ (i) =

(γi, γ−i, . . . , γ−i︸ ︷︷ ︸
γ2N

, 0, . . . , 0). For any p ≥ 1, the Lp norm of these vectors is

∥τ (i)∥p =


γN

2 if i = 0,

(γip + γ2N−ip)1/p if i ∈ [N ].

Consider p = N/j for j ∈ {1, . . . , N}. Then ∥τ (i)∥p is minimized at i = j with value

2j/N · γj ≤ 2 · γj . For all i > j, the first term dominates, and ∥τ (i)∥p > γi ≥ (2α) · γj =

α · (2γj). For all i < j, the second term dominates, and ∥τ (i)∥p > γ2N−i ≥ 2α ·γj . That is,

the only α-approximate solution for the Lp norm objective is to not open the facility at aj .

Thus, any α-approximate portfolio for Lp norms
{

N
1
, N

2
, . . . , N

N

}
must contain N dis-

tinct solutions. Since N = Ω(log2α d), the result follows.

3.6 Experiments

We now present our experiments on U.S. Census and pharmacy data in the state of Mis-

sissippi. For different values of the subsidy parameter δ, our goal is to present a portfolio

of solutions to open 10 new pharmacies in Mississippi to help tackle the issue of medical

deserts in an equitable way. Recall that (see Figure 3.1) we define a medical desert as a

U.S. Census blockgroup6 with over 20% below the poverty line and at a distance of over

2 miles (urban areas) or 10 miles (rural areas) from its nearest CVS/Walgreens/Walmart

6A U.S. Census blockgroup is a small administrative region with between 500 and 3000 people. It is the
smallest unit for which U.S. Census data is publicly available.
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pharmacy.7 Focusing on these three largest pharmacy chains allows us to understand the

impact of opening multiple facilities at scale.

As Figure 3.1 notes, 348 of the 2445 blockgroups in Mississippi are medical deserts,

and they disproportionately affect the majority Black or African American population. Us-

ing our integer programming formulation (Equation IP) for FSFL and our portfolio algo-

rithm for Lp norms from Section 3.4, we will give a portfolio of solutions for various values

of the subsidy parameter δ. Each solution in the portfolio recommends the locations of 10

new pharmacies in Mississippi in addition to the 206 existing facilities. The total loss of

these new pharmacies is bounded by a fraction δ of the total revenue of all clients.

We choose δ ∈ {0.005, 0.01, 0.02, 0.05} to allow the losses to span from 0.5% to 5%.

Each blockgroup is a client, and a facility can be opened at any blockgroup location, where

the location of a blockgroup is taken to be its geometric center. Further details on our

modeling choices can be found at the end of this section.

We classify each blockgroup into 4 × 2 × 2 = 16 groups based on (1) which of the

4 Congressional districts in Mississippi it lies in, (2) whether the blockgroup is rural or

urban, and (3) whether or not 20% of the people in the blockgroup are below the poverty

line. The group distance for a group is defined as the average distance of blockgroups to

facilities, weighted by the population of the blockgroup. Distances of urban groups are

weighted five times as much as rural groups to account for lesser access to vehicles. Given

p ≥ 1, the Lp norm objective minimizes the Lp norm of the 16-dimensional group distance

vector.

We set the approximation parameter ε in Theorem 3.2 to 0.15, so that we are guaranteed

a 1.15-approximate portfolio for all Lp norm objectives since we obtain exact solutions to

the Equation IP.

Results. Figure 3.5 shows the portfolio for each value of δ ∈ {0.005, 0.01, 0.02, 0.05}.

For example, the portfolio for δ = 0.02 has four solutions corresponding to p = 1, 5.4, 13.5,

7We choose a higher distance threshold for rural areas to account for better access to vehicles. This is in
line with the methodology of the U.S. government to document food deserts [107].
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Table 3.3: Reduction in the number of medical deserts for different solutions in the portfolio
for subsidy δ = 0.02 for various groups in Mississippi. A medical desert is a blockgroup
with ≥ 20% poverty rate and over n miles further away from the nearest pharmacy chain,
where n = 2 miles for urban areas and n = 10 miles for rural areas.

Group Existing
Medical
Deserts

Number of medical deserts reduced
Urban/
Rural District:

L1

Norm
L5.4

Norm
L13.5

Norm
L∞

Norm

Rural

1 41 0 0 0 0
2 109 16 22 23 23
3 98 19 19 20 19
4 26 6 5 0 0

Urban

1 6 0 0 0 0
2 31 4 0 0 4
3 26 1 1 0 0
4 11 5 0 0 0

Total 348 51 47 43 46

and∞ arranged in the third column. We further expand on our results for this portfolio.

As Table 3.3 shows, each solution in this portfolio for δ = 0.02 reduces between 43 and

51 medical deserts out of 348 medical deserts, despite adding only 10 facilities each to the

existing 206 facilities. Further, 70-80% of these ∼50 blockgroups are African American

for each solution, thus significantly reducing the disproportionate impact of medical deserts

on the Black population.

The portfolio solutions are also significantly diverse across the 16 groups. As Table 3.1,

Table 3.3, and Figure 3.5 show, different solutions are optimal for different groups in terms

of reduction of distances or medical deserts, with each solution performing well for dif-

ferent groups. Each solution has its own strength: the L1 norm solution reduces the most

number of medical deserts, the L5.4 norm solution leads to the smallest average distance

traveled, and the L∞ norm solution is the most equitable.

Further details on modeling choices. Since the U.S. Census blockgroup is the most

granular level at which Census data is provided, we assume that all people in each Census

blockgroup are located at the geometric center of the blockgroup. All our computations
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Figure 3.5: Portfolios of suggested locations for k = 10 new pharma-
cies using the FSFL model in the state of Mississippi, USA, in addi-
tion to existing CVS, Walmart, and Walgreens pharmacies. Each column
shows the portfolio for a given subsidy parameter δ ∈ {0.005, 0.01, 0.02,
0.05} for approximation factor 1 + ε = 1.15. While different solutions recommend
opening facilities in different locations, all solutions significantly reduce the number of
medical deserts.
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assume straight-line distances. We assume that a new facility can be located at the center

of any blockgroup. A facility cannot be opened outside Mississippi, although we allow

people to travel to existing facilities outside Mississippi if those are closer. For simplicity,

all operating costs are uniformly set to $2500 while client revenues are set to $0.10 for

each person above the poverty line and $0.05 for each person below the poverty line. These

parameters can be varied in our model.

3.7 k-CLUSTERING and UNCAPACITATEDFACILITYLOCATION

In this section, we show that the k-CLUSTERING and UNCAPACITATEDFACILITYLOCA-

TION (UFL) problems are special cases of the Fair Subsidized Facility Location (FSFL)

problem.

The k-CLUSTERING problem is similar to FSFL except we are only given the met-

ric space (C ∪ F,dist), the objective g, and a bound k on the number of facilities as

input and must return a solution (F ′,Π) with |F ′| ≤ k that minimizes g. Examples of

k-CLUSTERING include the k-median problem, where g is the sum of client distances to

corresponding assigned facilities, the k-mean problem, where g is the L2 norm of the client

distances, and the k-center problem, where g is the maximum client distance.

In UFL, we are only given the metric space (C ∪ F,dist), operating costs cf > 0

for f ∈ F , and the distance objective function g. Given a solution (F ′,Π) with client

distances τj, j ∈ C, its objective value is the sum g(τ) +
∑

f∈F ′ cf of operating costs of

open facilities and the distance objective function value.

We reduce both these problems to FSFL:

Theorem 3.6. k-CLUSTERING and UFL are special cases of FSFL.

Proof. We reduce the following budgeted facility location problem to FSFL; it is standard

to reduce both k-CLUSTERING and UFL to this budgeted problem. In this budgeted prob-

lem, we are given (i) the metric space (C∪F,dist), (ii) operating costs cf > 0 for f ∈ F ,
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(iii) a budget B on operating cost of open facilities, and (iv) the distance objective function

g. A solution (F ′,Π) is feasible if
∑

f∈F ′ cf ≤ B and its objective value is g(τ) where τ

is the vector of client distances to assigned facilities. Clearly, k-CLUSTERING is a special

case of this problem with cf = 1 for all f and B = k. UFL can be reduced to this problem

by ‘guessing’ the operating costB of open facilities in the optimal solution and minimizing

g while fixing this operating cost.

Given an instance of the budgeted problem, assume (after possibly scaling operating

costs, budget B, and distances dist) without loss of generality that minf∈F cf = 1. We

construct an instance of FSFL as follows: metric space (C ∪ F,dist), operating costs c,

and distance objective function g stay the same. We define revenue rj := 1
|C| for each client

j ∈ C, and set δ = B − 1.

First, we show that a feasible solution (F ′,Π) to the budgeted problem is also feasible

for the FSFL instance. It is sufficient to show that it is δ-subsidized, that is, the total loss

of unprofitable facilities is at most δ times the total revenue
∑

j∈C rj of all clients. Note

that since minf cf = 1 and
∑

j∈C rj = |C| × 1
|C| = 1, we get that all open facilities are

unprofitable, so that ℓf = cf −
∑

j:Π(j)=f rj for all f ∈ F ′. Therefore, the total loss of

facilities is

∑
f∈F ′

ℓf =
∑
f∈F

cf − ∑
j:Π(j)=f

rj

 =

(∑
f∈F

cf

)
−
∑
j∈C

rj ≤ B − 1 = δ = δ
∑
j∈C

rj,

where the inequality follows since (F ′,Π) is feasible for the budgeted problem.

Conversely, we show that a feasible solution (F ′,Π) to FSFL is feasible for the bud-

geted problem: as before, all open facilities are unprofitable, so that

B − 1 = δ = δ
∑
j∈C

rj ≥
∑
f∈F ′

ℓf =
∑
f∈F

cf − ∑
j:Π(j)=f

rj


=

(∑
f∈F

cf

)
−
∑
j∈C

rj =

(∑
f∈F

cf

)
− 1.
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Therefore,
∑

f∈F ′ cf ≤ B. Observing that the objective values stay exactly the same fin-

ishes the proof.

3.8 Conclusion

We gave trade-offs between portfolio size and approximation quality for the classes of (1)

conic combinations of given base functions and (2) functions that interpolate monotonically

between the sum and max of the base functions. In particular, for the latter, we guarantee a

portfolio size at most logarithmic in the number of base functions. Our algorithms reduce

the problem of finding portfolios to the problem of designing approximation algorithms for

fixed objectives.

As a concrete application, we proposed the Fair Subsidized Facility Location problem

motivated by the crisis of pharmacy deserts. Our model is a generalization of the classical

facility location problems and allows for richer clients to contribute to new facilities in

underserved areas through a ‘subsidy’ constraint. It also allows the losses to be controlled

while simultaneously being fair to different groups of people. Our approximation algorithm

introduces a new combinatorial subroutine to round fractional solutions to get an integral

set of facilities. However, it remains open if the dependence of the approximation ratio on

1/δ is necessary.

We used our FSFL model to propose portfolios for opening new pharmacies in Missis-

sippi, USA, with the aim of reducing medical deserts and average distances to the nearest

pharmacy. Solutions in our portfolio not only significantly reduce the number of medical

deserts using only 10 new facilities each, they are also diverse in their effects on people

living in different areas. Thus, a policymaker can evaluate these solutions on multiple axes

of interest and weigh their relative trade-offs before making an informed decision, as op-

posed to relying on the algorithm designer for a single good solution. Further, these options

may also help constituents in different districts to mobilize political support for facilities

opening closer to them.
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CHAPTER 4

ORDERED NORMS, SYMMETRIC MONOTONIC NORMS, AND COVERING

POLYHEDRA

4.1 Introduction

In this chapter, we study portfolios for ordered norms and symmetric monotonic norms. We

will look at general bounds on portfolio sizes for these norm classes, and specifically for

certain scheduling and covering problems. We begin by recalling the definitions of top-ℓ

norms, ordered norms, and symmetric monotonic norms:

Top-ℓ norms [9, 37]. Recall (Definition 2.1) that the top-ℓ norm of a vector x ∈ Rd is the

sum of the ℓ highest coordinates of ℓ by absolute value. Top-ℓ norms generalize the L1 and

L∞ norms.

Ordered norms [20, 38]. Given a non-zero weight vector w ∈ Rd
≥0 with nonincreasing

weights w1 ≥ · · · ≥ wd ≥ 0, the ordered norm of x ∈ Rd
≥0 is the weighted sum of

coordinates of x with the kth highest coordinate of x weighted by the kth highest weight

wk. Ordered norms generalize top-ℓ norms (choose w1 = . . . = wℓ = 1 and wℓ+1 = . . . =

wd = 0, i.e., w = 1ℓ) and have a natural fairness interpretation of minimizing the cost of

the most burdened individuals when x is a vector of individual costs.

Symmetric monotonic norms [8, 9, 23, 20]. A norm is symmetric monotonic if it is (i)

invariant to the permutation of coordinates and (ii) nondecreasing in each coordinate. Lp

norms, top-ℓ norms, and ordered norms are all symmetric monotonic norms.

This chapter is based on joint work with Swati Gupta and Mohit Singh. A preliminary version appeared
in the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) 2025 [108]. An extended
version is currently under submission.
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Ordered norms are fundamental to symmetric monotonic norms in two aspects: each

symmetric monotonic norm is (1) O(log d)-approximated by some ordered norm [38], and

(2) the supremum of some set of ordered norms [20].

For top-ℓ norms, Goel and Meyerson [9] essentially obtain a (1 + ε)-approximate port-

folio of sizeO
(
log d
ε

)
for all ε ∈ (0, 1]. We generalized this bound to all classes of functions

that interpolate monotonically between L1 and L∞ norms in Chapter 3.

However, for ordered norms, only a general construction of poly(d1/ε)-sized (1 + ε)-

approximate portfolios was known, due to Chakrabarty and Swamy [20]. No bound was

known for symmetric monotonic norms. We observe that their result generalizes to sym-

metric monotonic norms (Lemma 4.5). It was also known that a solution that is simulta-

neously α-approximate for all top-ℓ norms is, in fact, simultaneously α-approximate for

all symmetric monotonic norms [9]. This property is no longer true for portfolios of size

greater than 1 (e.g., see our Example 2.1, Lemma A.2, Theorem 4.3, or Theorem 4.4). In

particular, we show that the approximation ratio of a portfolio for top-ℓ norms and ordered

norms can differ by a factor polynomial in d. Consequently, we cannot restrict to con-

structing portfolios only for top-ℓ norms and need new techniques for the much larger sets

of ordered norms and symmetric monotonic norms. We show that there exist sets D and

objectives h1, . . . , hd : D → R≥0 for which the portfolio size must be dΩ(1/ log log d) (i.e.,

nearly polynomial in d) for ordered and symmetric monotonic norms even for approxima-

tion factor as large as O(log d) (Theorem 4.3).

4.1.1 Setting

As before, we are given some domain or set D of feasible solutions and base objectives

h1, . . . , hd : D → R≥0. Given some norm ∥ · ∥ on Rd, we can seek to minimize ∥h(x)∥

over x ∈ D. In this chapter, we will be concerned with the norms ∥ · ∥ in the class C of

ordered norms or symmetric monotonic norms on Rd. At various places in this chapter, we

will haveD ⊆ Rd
≥0 and base objective function hi(x) = xi for all i ∈ [d], so that h(x) = x;
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Figure 4.1: A qualitative plot to illustrate the trade-off between approximation α and the
smallest portfolio size |Xα| for the MACHINELOADSIDENTICALJOBS problem for ordered
norms. The worst-case lower bound |Xα| = Ω

(
log d

logα+log log d

)
is illustrated in red, and the

upper bound |Xα| = O
(

log d
log(α/4)

)
is illustrated in blue. The two bounds converge for

α = Ω(log d).

in these cases, we will omit the base functions h1, . . . , hd.

4.1.2 Contributions and Techniques

First, we show (Lemma 4.5) that symmetric monotonic norms – like ordered norms – al-

ways admit a portfolio of size poly(d1/ε) for arbitrary D and base functions h1, . . . , hd :

D → R≥0. Further, we give sets D and nonnegative base functions h1, . . . , hd on D where

any O(log d)-approximate portfolios for symmetric monotonic norms or ordered norms

have size dΩ(1/ log log d).

To obtain smaller portfolios for covering and scheduling problems, we develop a gen-

eral framework called OrderAndCount. We obtain portfolios of size polylog(d) using

this framework, which is an exponential improvement over the general size bound (also see
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Table 4.1). Specifically, we consider the following two settings:

Characterizing trade-off for MACHINELOADSIDENTICALJOBS. As our first result,

we consider the MACHINELOADSIDENTICALJOBS (MLIJ) problem where n identical

jobs must be scheduled on d unidentical machines. The goal is to minimize some norm

of the vector of machine loads. This is a simple model for workload distribution among d

workers (corresponding to machines) with different processing speeds, and various norms

correspond to various fairness criteria for fair distribution of jobs. We prove the following

result:

Theorem 4.1. There is a polynomial-time algorithm that, given any instance of the MA-

CHINELOADSIDENTICALJOBS problem with d machines and any α > 4, finds a portfolio

X of size

|X| = O

(
log d

log(α/4)

)
that is (i) α-approximate for ordered norms and (ii) O(α log d)-approximate for symmet-

ric monotonic norms. Further, for all α > 1, there exists a family of instances of MA-

CHINELOADSIDENTICALJOBS for which the size of any α-approximate portfolio for or-

dered norms is Ω
(

log d
logα+log log d

)
.
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Table 4.1: Approximations for ordered norms and symmetric monotonic norms in this chapter, for arbitrary ε ∈ (0, 1].

Problem or set of
feasible vectors D

Worst-case
approximation factor

for simultaneous
approximation

Guarantees for portfolio of size > 1

Size
Approximation

for ordered norms

Approximation
for symmetric

monotonic norms
MACHINELOADSIDENTICALJOBS

d machines
(Theorem 4.1)

Ω(
√
d) O

(
log d
ε

)
4 + ε O(log d)

COVERINGPOLYHEDRON

with r constraints:
{x ∈ Rd

≥0 : Ax ≥ b},
A ∈ Rr×d

≥0 , b ∈ Rr
≥0

(Theorem 4.2)

Ω(
√
d)

(
log(d/ε)

ε

)O(r2)

1 + ε O(log d)
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The above result characterizes the trade-off between portfolio sizes and achievable ap-

proximation factors (up to log log factor) for MLIJ (also see Figure 4.1). To obtain this

result, we use our OrderAndCount approach, which exploits the fact that each ordered

norm, while a convex function in general, is a linear function when restricted to a region

where all vectors satisfy the same order of coordinate values. That is, if vector x ∈ Rd

satisfies xπ(1) ≥ xπ(2) ≥ . . . ≥ xπ(d) ≥ 0 for some order π on [d], the ordered norm ∥x∥(w)

is the linear function
∑

k wkxπ(k). This gives the following algorithm to obtain portfolios

for ordered norms: for each order π, we can restrict to the setDπ of vectors inD that satisfy

order π, and collect the set of extreme points of Dπ. The union of these extreme points is

then an optimal (i.e, 1-approximate) portfolio for ordered norms. In general, this results

in exponentially many solutions even when D is a polytope, since there are exponentially

many orders π and potentially exponentially many extreme points of each Dπ. We show

that for MLIJ, (i) it suffices to restrict to a specific order π∗ (that is determined by the

problem instance), and that (ii) there are at most d extreme points of Dπ∗ . This already

reduces the portfolio size to d. Finally, we give a rounding algorithm to show that these d

extreme points can further be α-approximated by a subset of O(logα/4 d) integral points,

which results in the desired portfolio.

Exponential improvement in portfolios for covering. Next, we consider the COVER-

INGPOLYHEDRON problem, where the set of feasible solutions is a polyhedron with r

covering constraints of the form: a⊤x ≥ b (for a ∈ Rd
≥0, and b ∈ R≥0) together with

nonnegativity x ≥ 0. This generalizes the MLIJ problem above, and models many natural

scenarios for workload distribution. We seek to minimize various norms of the vector x

subject to these covering constraints.

Many problems can be modeled as the covering polyhedron, for example, a fair cen-

tralized server that must balance the workload on d machines, each with r parallel pro-

cessing units [109]. This load-balancing problem also appears in the context of volunteer-
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dependent non-profit organizations, such as HIV social care centers, blood donation drives,

food recovery organizations [110], etc. Numerous studies have been conducted on the rea-

sons for the attrition of volunteers, and overburdening by the amount of demands placed on

them is one of the key ones [111, 112].

This can be thought of as a scheduling problem with d machines and r different kinds

of jobs, where each machine is capable of running different kinds of jobs in parallel. If

bj units for the jth job type need to be scheduled, and machine i ∈ [d] has processing

speed Aj,i for the jth type of job, then the total loads xi, i ∈ [d] on the machines satisfy∑
i∈[d]Aj,ixi ≥ bj . For a given fairness criterion or norm ∥ · ∥ on Rd, this translates to

minimizing ∥x∥ over the covering polyhedron {x ∈ Rd : Ax ≥ b, x ≥ 0}.

The challenge in extending OrderAndCount to such problems is twofold: (i) bound-

ing the number of possible orders that the optimal solution x∗ = argminx∥x∥(w) for any

ordered norm might satisfy, and then (ii) selecting a subset of corresponding extreme points

for each order that must be included in the portfolio. For the first challenge, we develop

a novel primal-dual counting technique which allows us to count the number of possi-

ble orders in an appropriate dual space that is structurally much simpler (Section 4.5).

For the second challenge, we show that a sparsification procedure allows us to reduce the

number of extreme points for each order. Together, using OrderAndCount, we give

poly-logarithmic sized portfolios for COVERINGPOLYHEDRON for constant r:

Theorem 4.2. For COVERINGPOLYHEDRON in d dimensions and r constraints, for any

ε ∈ (0, 1], there is a portfolio X of size

|X| = O
(
log(d/ε)/ε

)3r2−2r
,

which is (i) (1 + ε)-approximate for ordered norms, and (ii) O(log d)-approximate for

symmetric monotonic norms. There exists an algorithm to find this portfolio with running

time that is polynomial in d and (log(d)/ε)r
2
.
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This result shows the following trade-off between ε and portfolio size |X1+ε|: we

have that |X1+ε|1/Ω(r2) × ε remains roughly a constant. If the number of constraints

r is o
( √

log d
log log d

)
, this gives an exponential improvement over the current best bound of

poly(d1/ε) [20].

4.2 Preliminaries

We give useful preliminary results in this section. Omitted proofs are included in Sec-

tion B.1. Our first lemma shows that portfolios can be composed:

Lemma 4.1 (Portfolio composition). Given class C of functions over set D of feasible

solutions,

1. If X1 is an α1-approximate portfolio for C over D and X2 is an α2-approximate

portfolio for C over X1, then X2 is an α1α2-approximate portfolio for C over D.

2. Suppose D =
⋃

i∈[n]Di and Xi is an α-approximate portfolio for C over Di for each

i ∈ [n]. Then
⋃

i∈[n]Xi is an α-approximate portfolio for C over D.

Next, it is known that any symmetric monotonic norm ∥ · ∥ on Rd can be O(log d)-

approximated by an ordered norm on Rd [38]. Consequently, the same bound also holds

for portfolio approximations:

Lemma 4.2. For any D, an α-approximate portfolio X ⊆ D for ordered norms is an

O(α log d)-approximate portfolio for symmetric monotonic norms.

Finally, we characterize the class of duals to ordered norms and state the corresponding

Cauchy-Schwarz inequality, which will be used in our OrderAndCount framework. An

order π on a finite setX is defined as a bijection betweenX and {1, . . . , |X|}; for simplicity

we denote the set of all orders on X as Perm(X) or as Perm(d) when X = [d]. We say

that a vector x ∈ Rd
≥0 satisfies an order π ∈ Perm(d) if xπ(1) ≥ · · · ≥ xπ(d). Recall that

for a vector x ∈ Rd, we denote x↓ as the vector with coordinates of x sorted in decreasing

order. We also denote 1k ∈ Rd as the vector with k ones followed by zeros.
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Lemma 4.3 (Dual ordered norms). Given a weight vector w ∈ Rd, the dual norm ∥ · ∥∗(w)

to ordered norm ∥ · ∥(w) is given by

∥y∥∗(w) = max
k∈[d]

∥y∥(1k)

∥w∥(1k)

.

Lemma 4.4 (Ordered Cauchy-Schwarz). For all x, y ∈ Rd
≥0, ∥x∥(w)∥y∥∗(w) ≥ x⊤y. Fur-

ther, equality holds if and only if

1. there is some order π ∈ Perm(d) such that x, y both satisfy π.

2. for each k ∈ [d] either x↓k = x↓k+1 or
∥y∥(1k)

∥w∥(1k)
= ∥y∥∗(w).

4.3 General Bounds on Portfolio Size

In this section, we give general upper and lower bounds on portfolio sizes for ordered and

symmetric monotonic norms. Omitted proofs are included in Section B.1.

[20] show that the best-known upper bound on the size of a (1 + ε)-approximate port-

folio for ordered norms is polynomial in d1/ε. We generalize their bound to symmetric

monotonic norms:

Lemma 4.5. For any feasible set D, base functions h1, . . . , hd : D → R≥0, and ε ∈ (0, 1],

there is a (1+ ε)-approximate portfolio of size poly(d1/ε) for symmetric monotonic norms.

Further, we show that this bound is nearly tight for ordered norms and symmetric mono-

tonic norms. Specifically, there exist sets D and base functions h1, . . . , hd : D → R≥0

where any α-approximate portfolios must have size d1/Ω(log log d) even for approximation α

as large as O(log d):

Theorem 4.3. There exist sets D and base functions h1, . . . , hd : D → R≥0 such that any

O(log d)-approximate portfolio for ordered norms must have size dΩ(1/ log log d). The same

bound holds for symmetric monotonic norms.

84



As noted previously, this is another proof that α-approximate portfolios for top-ℓ norms

are not necessarily α-approximate portfolios for larger classes such as ordered norms or

symmetric monotonic norms. Indeed, the size of the smallest O(1)-approximate portfolio

for top-ℓ norms for base functions h1, . . . , hd is O (log d). As the above result shows, the

minimum portfolio size for O(1)-approximate portfolios for ordered or symmetric mono-

tonic norms can be dΩ(1/ log log d), since an O(log d)-approximate portfolio is alos an O(1)-

approximate portfolio.

4.4 OrderAndCount for MACHINELOADSIDENTICALJOBS

In this section, we introduce the OrderAndCount framework and prove Theorem 4.1 for

the MLIJ problem. Recall that we seek to assign n copies of a job among d machines with

different processing times pi, i ∈ [d]. This is the simplest model for workload distribution

where some tasks must be distributed among individuals in a workplace: processors corre-

spond to individuals, processing times represent their efficiencies, and balancing loads on

machines corresponds to managing the workloads of the individuals. Given a norm ∥ · ∥

on Rd, the goal is to schedule the jobs to minimize the norm of the vector of machine

loads. We seek a portfolio of solutions (i.e., schedules) for ordered norms and symmetric

monotonic norms.

To see why a single solution may be suboptimal, we observe a simple example where

no solution is a simultaneous o(
√
d)-approximation: suppose there are n = d jobs and

p1 = 1 while p2 = · · · = pd =
√
d. The optimal solution for the L∞ norm (i.e., maximum

load) minimization assigns one job per machine to get maximum load
√
d. The optimal

solution for the L1 norm (i.e., total load) minimization assigns all jobs to the most efficient

machine, i.e., machine 1, for a total load of d. Therefore, any assignment with < d/2 jobs

on machine 1 is an Ω(
√
d)-approximation for L1 norm, and any assignment with ≥ d/2

jobs on machine 1 is an Ω(
√
d)-approximation for L∞ norm. This motivates us to increase

the portfolio size.
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In Subsection 4.4.1, we prove the upper bound on portfolio size in Theorem 4.1, guar-

anteeing for each α > 4 a portfolio of size O
(

log d
log(α/4)

)
that is α-approximate for or-

dered norms and O(α log d)-approximate for symmetric monotonic norms. We prove the

lower bound showing that any α-approximate portfolio for ordered norms must have size

Ω
(

log d
logα+log log d

)
in Subsection 4.4.2. We will also prove (Theorem 4.4) that there are

instances of MLIJ with an optimal portfolio of size 2 for top-ℓ norms, but where any O(1)-

approximate portfolio for ordered norm must have size Ω
(

log d
log log d

)
.

We start with some notation. Since all jobs are identical, we can identify a schedule by

the number of jobs on each machine. If ni ∈ Z≥0 jobs are scheduled on machine i, then∑
i∈[d] ni = n. The corresponding load vector is x = x(n) = (n1p1, . . . , ndpd). Therefore,

the set of feasible solutions is D = {x ∈ Rd
≥0 : xi = nipi ∀ i ∈ [d], ni ∈ Z≥0 ∀ i ∈

[d],
∑

i ni = n}. We can relabel the machine indices and assume without loss of generality

that 0 < p1 ≤ · · · ≤ pd. That is, machine 1 is the fastest, followed by machine 2, etc.

4.4.1 Portfolio Upper Bound

Our high-level plan is as follows: we show that special instances of MLIJ that we call

doubling instances – those where each pi is a power of 2 – satisfy two key properties:

(i) any instance of MLIJ is 2-approximated by some doubling instance (Lemma 4.6), and

(ii) the optimal solution xOPT for any symmetric monotonic norm to a doubling instance

satisfies xOPT
1 ≥ xOPT

2 ≥ · · · ≥ xOPT
d (Lemma 4.7), i.e., must satisfy a specific order of

coordinates. These inequalities allow us to relax the integrality constraints and consider

the polyhedron P = {x :
∑

i
xi

pi
= n;x1 ≥ · · · ≥ xd ≥ 0} if fractional solutions,

where the coordinate-wise inequality constraints can be put in for doubling instances. This

sets up OrderAndCount: there is only one possible order for vectors x ∈ P , which is

x1 ≥ · · · ≥ xd ≥ 0. Therefore, each ordered norm ∥x∥(w) = w⊤x is a linear function

over P , and so the set of vertices of P form an optimal portfolio of fractional solutions

for ordered norms for the doubling instance and a 2-approximate portfolio for the original
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Figure 4.2: An example for makespan minimization with 2 machines and 5 jobs where
xOPT
1 < xOPT

2 for optimal load vector xOPT.

instance. We show that we can restrict to O(logα/4 d) of these vertices, losing factor α/4.

Finally, we lose another factor 2 in rounding fractional solutions to integral ones, to get

an overall approximation factor α for ordered norms. By Lemma 4.2, this portfolio is

O(α log d)-approximate for symmetric monotonic norms.

Lemma 4.6. Given an instance of MLIJ with dmachines and n copies of a job, there exists

another instance of MLIJ with d machines and n jobs such that for any load vector x′ for

this modified instance, the corresponding load vector x for the original instance satisfies

1√
2
x ≤ x′ ≤

√
2x.

Proof. To construct the new instance, round each pi to its closest power of 2, say p′i. Then

1√
2
p′i ≤ pi ≤

√
2p′i. When ni jobs are scheduled on processor i, corresponding load vectors

x = (n1p1, . . . , ndpd) and x′ = (n1p
′
1, . . . , ndp

′
d) are within factor

√
2 of each other.

Corollary 4.1. For ordered norms, an α-approximate portfolio for an instance of MLIJ

can be obtained from a α
2

-approximate portfolio for the corresponding doubling instance.

Here is the first main idea of OrderAndCount: we show next that for doubling in-
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stances, optimal load vector xOPT for any symmetric monotonic norm always satisfies the

order xOPT
1 ≥ · · · ≥ xOPT

d . This is false if the instance is not doubling; see Figure 4.2.

Lemma 4.7. Suppose xOPT is the optimal load vector for some symmetric monotonic norm

∥ · ∥ for a doubling instance. Then, we can assume without loss of generality that xOPT
1 ≥

xOPT
2 ≥ · · · ≥ xOPT

d .

Proof. Suppose xOPT
i < xOPT

i+1 for some i. Transfer one job from machine i+1 to machine

i, to get the new load vector x defined as:

xl =


xOPT
l if l ̸= i, i+ 1,

xOPT
i + pi if l = i,

xOPT
i+1 − pi+1 if l = i+ 1.

Since pi divides pi+1 and xOPT
i+1 > xOPT

i , we get that xOPT
i+1 − xOPT

i ≥ pi. Therefore,

max(xi, xi+1) = max
(
xOPT
i + pi, x

OPT
i+1 − pi+1

)
≤ xOPT

i+1 = max
(
xOPT
i , xOPT

i+1

)
.

Further, xi + xi+1 < xOPT
i + xOPT

i+1 . That is, (xi, xi+1) ≺ (xOPT
i , xOPT

i+1 ). Since all other

coordinates of x and xOPT are equal, a simple inductive argument shows that x ⪯ xOPT.

Lemma 2.1 then implies that ∥x∥ ≤ ∥xOPT∥, finishing the proof.

For the rest of this section, we restrict ourselves to doubling instances; we will give

an α/2-approximate portfolio of size ≤ 1 + logα/4 d for ordered norms for any doubling

instance. For any weight vector w, Lemma 4.7 allows us to relax the integer program

(Equation IP1) to a linear program: while not every load vector forms a feasible solution to

Equation IP1, Lemma 4.7 shows that there is an optimal solution for the ordered norm that

is feasible for this IP.
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min w⊤x s.t. (IP1)∑
i

xi
pi

= n, (4.1)

xi ≥ xi+1 ∀ i ∈ [d− 1], (4.2)

xi
pi
∈ Z≥0 ∀ i ∈ [d], (4.3)

min w⊤x s.t. (LP1)∑
i

xi
pi

= n, (4.4)

xi ≥ xi+1 ∀ i ∈ [d− 1], (4.5)

x ≥ 0. (4.6)

The next lemma characterizes the d vertices of the constraint polytope P := {x :∑
i
xi

pi
= n, x1 ≥ · · · ≥ xd ≥ 0} of Equation LP1. We omit the straightforward proof.

Lemma 4.8. For any weight vector w, the optimal solution x∗ to Equation LP1 satisfies

for some l ∈ [d] that

x∗1 = · · · = x∗l =
n∑

i∈[l]
1
pi

, x∗l+1 = · · · = x∗d = 0.

For l ∈ [d], denote the lth vertex as x(l) := n∑
i∈[l]

1
pi

1l, with l non-zero entries. Call

x(l) good if
n∑

i∈[l]
1
pi

≥ pl, (4.7)

i.e., if the value of each non-zero coordinate is at least the processing time corresponding to

the last non-zero coordinate. Clearly, x(1) is good since the number of jobs n ≥ 1. Further,

if x(l) is good, then x(l − 1) is also good. The next lemma says that if x(l) is good, then it
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can be rounded to an integral load vector:

Lemma 4.9. If x(l) is good, then it can be rounded to x̂(l) that is feasible for Equation IP1

and 1
2
x(l) ≤ x̂(l) ≤ 2x(l).

Proof. Denote ni =
x(l)i
pi

for all i ∈ [d], then nl+1 = · · · = nd = 0 and
∑

i∈[d] ni = n. Then

one can assign either n̂i = ⌊ni⌋ or n̂i = ⌈ni⌉ jobs to machine i ∈ [d], while ensuring that∑
i∈[d] n̂i = n. The load on machine i ∈ [d] in this new schedule is x̂(l), with x̂(l)i = pin̂i.

By definition of good vertices, and since p1 ≤ . . . ≤ pd, we have x(l)i ≥ pl ≥ pi for

each i ∈ [l]. Therefore, we get ni ≥ 1, thus implying 1
2
ni ≤ ⌊ni⌋ ≤ ni and ni ≤ ⌈ni⌉ ≤ 2ni

for all i ∈ [l]. This implies 1
2
ni ≤ n̂i ≤ 2ni for all i ∈ [d]. Since ni =

x(l)i
pi

and n̂i =
x̂(l)i
pi

,

we get the result.

Let L be the largest index such that x(L) is good. Our next lemma shows that rounding

good vertices gives a 2-approximate portfolio for ordered norms:

Lemma 4.10. {x̂(1), . . . , x̂(L)} is a 2-approximate portfolio for ordered norms for the

doubling instance.

Proof. Fix a weight vector w. Let xOPT be the (integral) optimal load vector for ∥ · ∥(w),

and let l be the largest index such that xOPT
l > 0. We will first show that there exists an

index l′ ≤ l such that (i) x(l′) is good, and (ii) ∥x(l′)∥(w) ≤ ∥xOPT∥(w). Together with

Lemma 4.9, this implies that ∥x̂(l′)∥(w) ≤ 2∥xOPT∥(w), implying the result.

We note first that x(l) is good: since xOPT is integral and xOPT
l ̸= 0, we have xOPT

l ≥ pl.

From Lemma 4.7, we have xOPT
1 ≥ · · · ≥ xOPT

l ≥ pl. Since
∑

i∈[l]
xOPT
i

pi
= n, we get

n ≥
∑

i∈[l]
pl
pi
= pl

∑
i∈[l]

1
pi

. That is, x(l) is good.

In particular, this implies that x(l′) is good for each l′ ≤ l, so it is now sufficient to

show that there is some l′ ≤ l such that ∥x(l′)∥(w) ≤ ∥xOPT∥(w). Consider the following

linear program:

min w⊤x s.t. (LP2)
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∑
i

xi
pi

= n, (4.8)

xi ≥ xi+1 ∀ i ∈ [d− 1], (4.9)

xl+1 = · · · = xd = 0. (4.10)

xOPT is feasible for this LP by assumption. Further, by an argument similar to Lemma 4.8,

we get that the vertices of the constraint polytope for this LP are x(1), . . . , x(l). Therefore,

there is some l′ ≤ l such that ∥x(l′)∥(w) = w⊤x(l′) ≤ w⊤xOPT = ∥xOPT∥(w), finishing the

proof.

We are ready to prove the upper bound in Theorem 4.1. We will convert the 2-approximate

portfolios of size d for doubling instances to an α/2-approximate portfolio of size ∼

logα/4 d, which implies α-approximate portfolios of size ∼ logα/4 d for MLIJ by Corol-

lary 4.1.

Proof of upper bound in Theorem 4.1. We claim that for all indices l, i ∈ [d] such that i ≤
α
4
l, we have x(l) ⪯ α

4
x(i). Therefore, ∥x(l)∥(w) ≤ α

4
∥x(i)∥(w) for all ordered norms

∥ · ∥(w) from Lemma 2.1, implying that
{
x((α/4)j) : j ∈ [0, 1 + log(α/4) L]

}
is an (α/2)-

approximate portfolio over doubling instances.

Since p1 ≤ · · · ≤ pd and i ≤ α
4
l, we have

∑
j∈[l]

1
pj
≥ 4

α

∑
j∈[i]

1
pj

. Therefore, for all

k ≤ l, we have

∑
j∈[k]

x(l)j =
kn∑
i∈[l]

1
pj

≤ α

4
· kn∑

j∈[i]
1
pj

=
α

4
·
∑
j∈[k]

x(i)k.

Further, for k > l,

∑
j∈[k]

x(l)j =
∑
j∈[l]

x(l)j =
nl∑
j∈[l]

1
pj

≤ α

4

nl∑
j∈[i]

1
pj

≤ α

4

∑
j∈[i]

x(i)j ≤
α

4

∑
j∈[k]

x(i)j.

Therefore, x(l) ⪯ (α/4)x(i). This completes the proof.
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4.4.2 Portfolio Lower Bound

We prove the lower bound by giving appropriate doubling instances with dmachines where

any α-approximate portfolio for ordered norms must have size Ω
(

log d
logα+log log d

)
. Given d,

let S = S(d) be a superconstant that we specify later; assume that S is an integer that

is a power of 2. Let L be the largest integer such that 1 + S2 + · · · + S2L ≤ d, then

L = Θ(logS d). The d machines are divided into L + 1 classes from 0 to L: there are S2l

machines in the lth class and the processing time on these machines is pl = Sl. The number

of jobs n is S3L; it is chosen so as to ensure that all vertices in the constraint polytope for

Equation LP1 are good, and can be rounded to an integral solution that is only worse by a

factor at most 2 (Lemma 4.9).

There are L + 1 weight vectors for our instance. The first weight vector is w(0) =

(1, 1, . . . , 1). The second weight vector is w(1) =
(
1, 1

S2 ,
1
S2 , . . . ,

1
S2

)
. More generally, for

l ∈ [0, L],

w(l) =

(
1,

1

S2
, . . . ,

1

S2︸ ︷︷ ︸
S2

,
1

S4
, . . . ,

1

S4︸ ︷︷ ︸
S4

, . . . ,
1

S2l−2
, . . . ,

1

S2l−2︸ ︷︷ ︸
S2l−2

,
1

S2l
, . . . ,

1

S2l︸ ︷︷ ︸
remaining

)
.

With some foresight, we choose S such that S
L
= 5α. We claim the following: for each

l ∈ [0, L− 1],

1. There is a schedule x̂(l) for this instance with ∥x̂(l)∥(w(l)) ≤ nlS−l.

2. Any schedule y that schedules more than n/4 jobs on machines in classes l + 1 to L

has ∥y∥(w(l)) ≥ nS
4
· S−l. Combined with the above and since α ≤ S

4L
, it cannot be

an α-approximation for the ordered norm corresponding to w(l).

3. Any schedule y that schedules more than n/4 jobs on machines in classes 0 to l − 1

has ∥y∥(w(l)) ≥ nS
2
· S−l. Therefore, it cannot be an α-approximation for the ordered

norms corresponding to w(l).
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4. L = Θ(logS d) = Ω
(

log d
logα+log log d

)
.

Claims 1, 2, and 3 imply that any α-approximate solution for norm w(l) must schedule

at least n/2 jobs on machines in class l. Another application of claims 2 and 3 then implies

that a portfolio that is α-approximate for weight vectors {w(0), . . . , w(L − 1)} must have

distinct solutions for each weight vector, and therefore has size at least L. Claim 4 then

implies our theorem.

Claim 4 follows from some algebra: L = Θ(logS d) = Θ(logαL d) = Θ
(

log d
logα+logL

)
.

If L = Ω(log d), then we are done since the target size is anyway Θ
(

log d
logα+log log d

)
=

O(log d) for all constant α. Otherwise, logL = O(log log d) and so L = Θ
(

log d
logα+logL

)
=

Ω
(

log d
logα+log log d

)
.

We move to claim 1. As alluded to before, n = S3L has been chosen so that each vertex

x(l) of the constraint polytope is good (see Equation 4.7), since

n

1 · 1
1
+ S2 · 1

S
+ · · ·+ S2L · 1

SL

≥ n

2SL
≥ SL = pL.

With this in hand, it is sufficient to give a fractional solution x(l) with ∥x(l)∥(w(l)) =

Θ(nlS−l), since Lemma 4.9 then implies the existence of an integral solution x̂(l) with

norm value at most twice. Consider x(l) = (a, . . . , a, 0, . . . , 0) where the first 1 + S2 +

· · ·+ S2l coordinates are non-zero and equal to a; all other coordinates are 0. Since a total

of n jobs must be scheduled (Equation 4.8),

n = a

(
1 · 1

1
+ S2 · 1

S
+ · · ·+ S2l · 1

Sl

)
≥ aSl,

so that a ≤ n
Sl . Therefore,

∥x(l)∥(w(l)) = a× sum of first (1 + S2 + · · ·+ S2l) coordinates of w(l) = a · l ≤ nlS−l.

We move to claim 2. Let y schedule more than n/4 jobs on machines in classes l+1 to
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L. Irrespective of how these n/4 jobs are distributed, they contribute a total load of at least

(n/4) × Sl+1. Since all coordinates of w(l) are at least 1
S2l , the contribution of these jobs

to ∥y∥(w(l)) is at least
1

S2l
× n

4
Sl+1 =

nS

4
· S−l.

Finally, we prove claim 3. Consider the restricted instance with only machines from

classes 0, . . . , l − 1 and n/4 jobs. Let x be the optimal fractional solution for this instance

for L∞ norm; it is easy to see that x must have equal loads on machines, so that from

Equation 4.8:

n = ∥x∥∞
(
1 · 1

1
+ S2 · 1

S
+ · · ·+ S2l−2 · 1

Sl−1

)
≤ 2∥x∥∞Sl−1,

implying ∥x∥∞ ≥ nS−l+1

2
. Therefore, any integral optimal solution x̂ to this restricted

instance must also satisfy

∥x̂∥∞ ≥ ∥x∥∞ ≥
nS−l+1

2
.

Since y is a solution to the larger original instance, we have ∥y∥∞ ≥ ∥x̂∥∞. Finally, since

w(l) = 1 by construction, we get ∥y∥(w(l)) ≥ ∥y∥∞. Together, we get ∥y∥(w(l)) ≥ nS
2
· S−l.

This completes the proof of claim 3 and of Theorem 4.1.

Portfolios for different classes of norms. Recall Lemma 2.2: if x∗ is a simultaneous

α-approximation for each top-ℓ norm, then it is a simultaneous α-approximation for all

symmetric monotonic norms. One might naturally wonder if this is true for portfolios: is an

α-approximate portfolio for top-ℓ norms also an α-approximate portfolio for all symmetric

monotonic norms? We show that not only is this false but that the gap between portfolio

sizes for top-ℓ norms and ordered norms can be unbounded, by constructing such instances

for MLIJ.

Theorem 4.4. There exist instances of MLIJ on d machines for which

1. there is an O(1)-approximate portfolio X of size 2 for top-ℓ norms, and
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2. any O(1)-approximate portfolio X ′ for ordered norms has size Ω
(

log d
log log d

)
.

Proof. From Theorem 4.1, there exist doubling instances of MLIJ with d machines where

any O(1)-approximate portfolio for ordered norms must have size Ω
(

log d
log log d

)
. We will

show here that all doubling instances of MLIJ admit O(1)-approximate portfolio of size 2

for all top-ℓ norms. Together, this implies the result.

Recall Lemma 4.9, Lemma 4.10: X ′ = {x̂(1), . . . , x̂(L)} is an O(1)-approximate

portfolio for all ordered norms where 1
2
x(l) ≤ x̂(l) ≤ 2x(l) for all l ∈ [L]. Therefore,

∥x̂(l)∥(1ℓ) is within factor 2 of ∥x(l)∥(1ℓ) for all ℓ ∈ [d]. Further for all ℓ ∈ [d],

∥x(l)∥(1ℓ) =


ln∑

i∈[l]
1
pi

if l ≤ ℓ,

ℓn∑
i∈[l]

1
pi

if l > ℓ.

Fix ℓ. Since pi ≤ pi+1 for all i, ln∑
i∈[l]

1
pi

is non-increasing in l. Further, ℓn∑
i∈[l]

1
pi

is decreasing

in l. Therefore, the smallest among ∥x(l)∥(1ℓ), l ∈ [L] is either ∥x(1)∥(1ℓ) or ∥x(L)∥(1ℓ).

This implies

min{∥x̂(1)∥(1ℓ), ∥x̂(L)∥(1ℓ)} ≤ 2min{∥x(1)∥(1ℓ), ∥x(L)∥(1ℓ)}

≤ 2min{∥x(1)∥(1ℓ), ∥x(2)∥(1ℓ), . . . , ∥x(L)∥(1ℓ)}

≤ 4min{∥x̂(1)∥(1ℓ), ∥x̂(2)∥(1ℓ), . . . , ∥x̂(L)∥(1ℓ)}.

Since {x̂(1), . . . , x̂(L)} is an O(1)-approximate portfolio for all ordered norms, this

implies that {x̂(1), x̂(L)} is an O(1)-approximate portfolio for all top-ℓ norms.

Example 4.1. One can also show that portfolios for ordered norms are not portfolios for

Lp norms: consider an instance of MLIJ with pi =
√
i for each machine i ∈ [d]. Denote

ρ(l) =
∑

i∈[l]
1
pi

=
∑

i∈[l]
1√
i
; also denote the dth Harmonic number Hd =

∑
i∈[d]

1
i
=

Θ(log d). Then for each l ∈ [d], x(l) = n
ρ(l)

(
1, . . . , 1︸ ︷︷ ︸

l

, 0, . . . , 0
)
. Recall (Lemma 4.9,

Lemma 4.10) that there exists an L ∈ [d] such that (1) 1
2
x(l) ≤ x̂(l) ≤ 2x(l) for all l ∈ [L]
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and (2) X ′ = {x̂(1), . . . , x̂(L)} is an O(1)-approximate portfolio for ordered norms. We

claim that each x ∈ X ′ is an Ω(
√
Hd)-approximation for the L2 norm objective.

For each l ∈ [L], ρ(l) ≤ 1 + 2

∫ l

1

2√
x
≤ 4
√
l, so that

2∥x̂(l)∥2 ≥ ∥x(l)∥2 =
n

ρ(l)
·
√
l ≥ n

4
.

Consider the following assignment: assign ni =
n

iHd
jobs to machine i ∈ [d] (we choose n

large enough so that each ni is integral). Then this is a valid assignment since
∑

i∈[d] ni =

n by definition of Hd. The machine loads for this assignment are xi = nipi =
n

Hd

√
i
. The

L2 norm of x is

∥x∥2 =
n

Hd

√∑
i∈[d]

1

i
=

n√
Hd

.

Therefore, each x̂(l) is an Ω(
√
Hd)-approximation for the L2 norm.

4.5 OrderAndCount for COVERINGPOLYHEDRON

In this section, we use OrderAndCount to prove Theorem 4.2 to obtain portfolios for

COVERINGPOLYHEDRON. A d-dimensional covering polyhedron is defined as P = {x ∈

Rd : Ax ≥ b, x ≥ 0} where A ∈ Rr×d
≥0 is the constraint matrix with r constraints and

b ∈ Rr
≥0. As alluded to before, such polyhedra model workload management in settings

with r splittable jobs to be distributed among d machines, each of which can run all r jobs

concurrently. We give an algorithm that given P and any constant ε ∈ (0, 1], obtains a

portfolio of size O
((

log(d/ε)
ε

)3r2−2r
)

that is (i) (1 + ε)-approximate for ordered norms

and (ii) O(log d)-approximate for symmetric monotonic norms.

We focus on the result for ordered norms since the result for symmetric monotonic

norms follows from Lemma 4.2. Assume that b = 1r = (1, . . . , 1)⊤, without loss of

generality by rescaling rows of A if necessary (and removing rows with b = 0 since they

are feasible anyway for all x ≥ 0).

For any order or permutation π on [d], define the restriced polytope Pπ := P ∩ {x ∈
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Rd : xπ(1) ≥ · · · ≥ xπ(d) ≥ 0}. Our high-level plan is the same: any ordered norm

∥ · ∥(w) is a linear function on each Pπ. Therefore, the minimum norm point x(w) :=

argminx∈P∥x∥(w) must be one of the vertices of some Pπ. Denote by X the union of sets

of vertices across all orders π; then X is an optimal portfolio for ordered norms. However,

two main issues potentially blow up the size |X|:

1. Each Pπ can have too many vertices. For each vertex of Pπ, d out of r+d constraints

Ax ≥ 1r, xπ(1) ≥ · · · ≥ xπ(d) ≥ 0 must be tight. Therefore, Pπ may have
(
d+r
d

)
∼ dr

vertices.

2. There are d! orders π ∈ Perm(d). Since we are taking a union over all such orders,

we get the following rough bound on the portfolio size |X|:

|X| ≤ (number of vertices
in each Pπ

)× (number of orders
π ) ∼ dr × d!. (4.11)

Broadly, we first use a sparsification idea (Subsection 4.5.1) to reduce the effective

dimension to
(

log(d/ε)
ε

)r
from d, losing approximation factor 1 + ε. This is done by count-

ing the number of unique columns of A up to factor 1 + ε. Sparsification also gives an

upper bound on the number of vertices in the restricted region Pπ corresponding to each

order. There are still too many orders to sum over, and this is where the primal-dual count-

ing technique comes in (Subsection 4.5.2). It allows us to restrict to a small number of

permutations π by counting in a suitable dual space to our primal problem:

min
x≥0
∥x∥(w) s.t. Ax ≥ b. (Primal)

min ∥λ⊤A∥∗(w) s.t. λ ∈∆r. (Dual)

The advantage with the ‘dual’ is that the underlying polytope – the probability simplex

∆r := {z ∈ Rr : z ≥ 0,
∑

i∈[r] zi = 1} in r dimensions – is easier to handle. Additionally,

it is in r dimensions instead of d. The key ingredient connecting the primal and the dual
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Algorithm 3 SparsifyPolyhedron(P)

input: covering polyhedron P = {x ∈ Rd : Ax ≥ 1r, x ≥ 0}, error parameter
ε ∈ (0, 1]

output: another covering polyhedron P̃ = {x ∈ Rd : Ãx ≥ 1r, x ≥ 0}
1: define µ = 3d2

ε
and initialize Ã = 0r×d

2: for i = 1 to r do
3: define a∗i = maxj∈[d]Ai,j and B(i) =

{
j ∈ [d] : Ai,j <

a∗i
µ

}
4: for j ∈ [d] do
5: if j ∈ B(i) then
6: set Ãi,j = 0
7: else
8: let l ∈ [0, ⌊log(1+ε/2) µ⌋] be the unique integer such that

a∗i
µ

(
1 +

ε

2

)l
≤ Ai,j <

a∗i
µ

(
1 +

ε

2

)l+1

9: set Ãi,j =
a∗i
µ

(
1 + ε

2

)l
10: return Ã, P̃ = {x ∈ Rd : Ãx ≥ 1r, x ≥ 0}

will be the Cauchy-Schwarz inequality for ordered norms (Lemma 4.4).

4.5.1 Sparsification

DenoteN = O
( log(d/ε)

ε

)
. We give a sparsification procedure (Algorithm 3) that reduces the

number of distinct columns in A to N r. For each row of matrix A, this sparsification (1)

removes ‘small’ entries in the row and (2) restricts the number of unique entries in the row

to N . Since there are r rows, the number of distinct columns after sparsification is N r.

Lemma 4.11. The columns of matrix Ã ∈ Rr×d
≥0 output by Algorithm Sparsify

-Polyhedron take one of N r values, i.e., [d] can be partitioned into S1, . . . , SNr such

that for any j, j′ ∈ Sl, the jth and j′th columns of Ã are the same.

Proof. Fix row i ∈ [r]. By construction, each entry in the ith row of Ã is in the set

{0} ∪
{

a∗i
µ

(
1 + ε

2

)l
: l ∈ [0, ⌊log(1+ε/2) µ⌋]

}
, where µ = 3d2

ε
. These are O(log(1+ε/2) µ) =

O(log(1+ε/2)(d
2/ε)) = O

(
log(d/ε)

ε

)
= N distinct numbers. Since each column has r en-

tries, one from each row, we get a total of N r possible values for a column.
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Sparsification only loses a factor (1 + ε) in the approximation (proof deferred to Sec-

tion B.2):

Lemma 4.12. P̃ = {x : Ãx ≥ 1r, x ≥ 0} output by Algorithm SparsifyPolyhedron

is a (1 + ε)-approximate portfolio for symmetric monotonic norms over P .

These lemmas allow us to work with P̃ = {x : Ãx ≥ 1r, x ≥ 0} instead of P . P̃

has the nice property that columns of Ã take at most N r distinct values. We will give

an optimal portfolio for ordered norms over P̃ of size O(N3r2−2r). Using Lemma 4.1 to

compose portfolios, this is sufficient to prove Theorem 4.2. Hereafter, we will only work

with the sparsified matrix Ã and polyhedron P̃ . For ease of notation, we drop the symbol Ã

and assume that the original matrix A and corresponding polyhedron P are already given

to us in the sparsified form.

Let S1, . . . , SNr denote the partition of [d] based on the value of columns of A, i.e.,

for each l ∈ [N r] and j, j′ ∈ Sl, jth and j′th columns of A are the same. Further, define

Q = {x ∈ Rd
≥0 : xj = xj′ ∀ j, j′ ∈ Sl, ∀ l ∈ [N r]}, i.e., the set of all non-negative

vectors in Rd that attain the same value for all coordinates j ∈ Sl, for all l ∈ [N r]. Define

P= = P ∩ Q. Recall that for weight vector w, we define x(w) := argminx∈P∥x∥(w). Our

next lemma shows that x(w) ∈ P=:

Lemma 4.13. Given a weight vector w, we can assume without loss of generality that for

all l ∈ [N r] and j, j′ ∈ Sl, x(w)j = x(w)j′ . That is, P= is an optimal portfolio for

symmetric monotonic norms over P .

Proof. Suppose x(w)j ̸= x(w)j′ , say x(w)j > x(w)j′ . Then consider x ∈ Rd such that

xk = x(w)k for all k ̸= j, j′, and xj = xj′ =
x(w)j+x(w)j′

2
. Then x ⪯ x(w) and so Lemma

Lemma 2.1 gives ∥x∥(w) ≤ ∥x(w)∥(w).

Further, clearly x ≥ 0 since x(w) ≥ 0. Since the jth and j′th columns of A are equal,

Ax = Ax(w) ≥ 1r, or that x ∈ P .

We define reduced orders next, which are simply orders in the smaller space RNr :
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Definition 4.1 (Reduced orders). An order ρ on [N r] is called a reduced order. For x ∈ Q,

define vector z(x) ∈ RNr
as follows: for l ∈ [N r], z(x)l := xj where j ∈ Sl. x ∈ Q is

said to satisfy reduced order ρ if zρ(1) ≥ · · · ≥ zρ(Nr) ≥ 0. Given a reduced order ρ, define

polyhedron

P=
ρ = {x ∈ P ∩Q : x satisfies reduced order ρ}.

At this point, a natural first attempt at bounding the portfolio size is to count the number

of ordered norms in the space of ‘reduced’ vectors {z(x) : x ∈ P=} ⊆ RNr . After

all, [20]’s result shows that there are at most poly(N r/ε) ordered norms in RNr up to a

(1 + ε)-approximation. However, this approach fails because ordered norms on Rd cannot

be translated appropriately into an ordered norm on the smaller space RNr .

For example, consider the covering polyhedron P = {x ∈ R3
≥0 : x1 ≥ 2, x2 + x3 ≥

4, 2x1 + x2 + x3 ≥ 10}. The point (3, 2, 2) ∈ P is the (unique) minimizer of the L1

norm, which corresponds to weight vector w = (1, 1, 1). The constraint polytope for P

has two unique columns, and the corresponding ‘reduced covering polyhedron’ is P ′ =

{z ∈ R2 : z1 ≥ 2, z2 ≥ 2, z1 + z2 ≥ 5}. A point (a, b, b) ∈ P corresponds to the point

(a, b) ∈ P ′. However, by a majorization argument, the point (5/2, 5/2) ∈ P ′ minimizes all

ordered norms on P ′, but the corresponding point (5/2, 5/2, 5/2) ∈ P with L1 norm 7.5 is

suboptimal for the L1 norm.

Therefore, it is not sufficient to count ordered norms in RNr , and we need an alternate

approach that we describe next. Suppose that we are given some reduced order ρ. Then

for x ∈ P=
ρ , ∥x∥(w) is a linear function of x. Therefore, given a weight vector w, if x(w)

satisfies reduced order ρ, then x(w) is one of the vertices of polyhedron P=
ρ . With this

observation, the rest of the proof is organized as follows:

• For each reduced order ρ, P=
ρ has at most N r2 + 1 vertices (Lemma 4.14).

• Consider the set Π of reduced orders such that for any weight vector w, x(w) satisfies

some reduced order ρ ∈ Π, i.e, Π = {reduced order ρ : ∃ w where x(w) satisfies ρ}.
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Then we will show that |Π| ≤ N2r(r−1) (Lemma 4.15).

Together, these observations mean thatX :=
⋃

ρ∈Π
(
vertices of P=

ρ

)
is an optimal port-

folio for ordered norms over P=. By Lemma 4.13, P= is an optimal portfolio for ordered

norms over P . Therefore, Lemma 4.1 implies that X is an optimal portfolio for ordered

norms over P . Further,

|X| =
∣∣∣ ⋃
ρ∈Π

(
vertices of P=

ρ

) ∣∣∣ ≤∑
ρ∈Π

∣∣(vertices of P=
ρ

)∣∣
≤
∑
ρ∈Π

(N r2 + 1) = |Π|(N r2 + 1) ≤ N2r(r−1)(N r2 + 1) = O(N3r2−2r).

This implies Theorem 4.2. We prove Lemma 4.14 next and defer Lemma 4.15 to the

next section.

Lemma 4.14. For each reduced order ρ, P=
ρ has at most N r2 + 1 vertices

Proof. For simplicity, assume (after possibly relabeling indices) that ρ(l) = l for all l ∈

[N r], and that S1 = {1, . . . , |S1|}, S2 = {1+|S1|, . . . , |S1|+|S2|} etc. Then the polyhedron

P=
ρ is the set of all x such that A⊤

i x ≥ 1 for all rows i ∈ [r] and

x1 = · · · = x|S1| ≥ x|S1|+1 = · · · = x|S1|+|S2| ≥ · · · ≥ xd−|SNr |+1 = · · · = xd ≥ 0.

Any vertex on P=
ρ corresponds to a set of d (linearly independent) inequalities. The con-

straints of the polytope have d − N r equalities and N r + r inequalities. Therefore, each

vertex corresponds to some N r of the N r + r inequalities being tight. The number of such

choices is
(
Nr+r
Nr

)
. Then,

(
N r + r

N r

)
=

(
N r + r

r

)
≤
(
1 +

N r

r

)r

.

For r = 1, this is at most 1 +N r. For r ≥ 2,
(
1 + Nr

r

)r ≤ (N r)r = N r2 .
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4.5.2 Primal-Dual Counting

In this section, we study the set Π of reduced orders such that for any weight vectorw, x(w)

satisfies some reduced order ρ ∈ Π, i.e, Π = {reduced order ρ : ∃ w s.t. x(w) satisfies ρ}.

We will prove the following:

Lemma 4.15. The number of possible reduced orders |Π| ≤ N2r(r−1).

The main idea is to count reduced orders not on x(w), but in a dual space. We write the

following modified primal and dual, and denote λ(w) = argminλ∈∆r
∥λ⊤A∥∗(w):

min ∥x∥(w) s.t. Ax ≥ 1r, x ∈ Q. (Primal’)

min ∥A⊤λ∥∗(w) s.t. λ ∈∆r (Dual)

Note that (A⊤λ)j is simply the dot product of the jth column of A with λ. Further,

recall that for all j, j′ ∈ Sl and for any l ∈ [N r], the jth and j′th columns of A are equal.

Therefore, we have (A⊤λ)j = (A⊤λ)j′ for any λ. By definition, this means that A⊤λ ∈ Q

for all λ ≥ 0.

The next lemma establishes the crucial connection between reduced orders in Equa-

tion Primal’ and Equation Dual. It uses Lemma 4.4 (Ordered Cauchy-Schwarz) along with

a Lagrangian function; we defer its proof to Section B.2.

Lemma 4.16. Given a weight vector w, ∥x(w)∥(w)∥A⊤λ(w)∥∗(w) = 1. Further, there is a

reduced order ρ such that both x(w), A⊤λ(w) satisfy ρ.

As a consequence of this lemma, it is sufficient to count reduced orders in the dual:

Π = {reduced order ρ : ∃ w where x(w) satisfies ρ}

= {reduced order ρ : ∃ w where A⊤λ(w) satisfies ρ}

⊆ {reduced order ρ : ∃ λ ∈∆r where A⊤λ satisfies ρ}.
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Denote Π∗ = {reduced order ρ : ∃ λ ∈ ∆r where A⊤λ satisfies ρ}. We will show that

|Π∗| ≤ N2r(r−1). From the above, this is sufficient to prove Lemma 4.15. Our final lemma

is a geometric counting inequality.1

Lemma 4.17. T hyperplanes partition ∆r into at most T r−1 + 1 regions.

Proof. The result is trivially true for r = 1 since ∆1 is a point. For r = 2, ∆2 is a line

segment, and T ‘hyperplanes’ partition it into≤ T+1 regions. For r ≥ 3, we use induction

on T . 1 hyperplane clearly divides any convex body into at most 2 ≤ 1r−1 + 1 regions.

Suppose T > 1. Let the T th hyperplane beH. By the induction hypothesis, the first T − 1

hyperplanes divide ∆r into at most (T − 1)r−1 + 1 regions. If ∆r ⊆ H, then H does not

add any new regions, and we are done.

Otherwise, the number of new regions H adds is the number of regions that the first

T − 1 hyperplanes partition ∆r ∩ H into. But ∆r ∩ H can be affinely transformed into

∆r−1 in this case, and so the number of new regions is at most (T − 1)r−2 + 1. Therefore,

by the induction hypothesis, the total number of regions with T hyperplanes is at most

((T − 1)r−1 + 1) + ((T − 1)r−2 + 1) ≤ T r−1 + 1 ∀ T ≥ 1, r ≥ 3.

We are ready to finish the proof of Lemma 4.15. Partition ∆r into regions {Rρ : ρ ∈

Π∗}, where Rρ := {λ ∈∆r : A
⊤λ satisfies ρ}. The size |Π∗| is exactly the number of such

regions. Pick j, j′ ∈ [d] such that j, j′ belong to different sets Sl, Sl′ . Then these regions

are separated by hyperplanes of the form {λ : (A⊤λ)j = (A⊤λ)j′}, i.e., different reduced

orders exist on different sides of these hyperplanes. There are
(
Nr

2

)
such hyperplanes, each

corresponding to a pair of sets Sl, Sl′ . By the above lemma, these partition ∆r into at most

(
N r

2

)r−1

+ 1 =

(
N r(N r − 1)

2

)r−1

+ 1 ≤ N2r(r−1).

1This result also follows from [113]’s (stronger) bound on the number of regions induced by T hyper-
planes in an r-dimensional Euclidean space. For completeness, we provide a (shorter) proof here.
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regions. Thus, |Π| ≤ |Π∗| = |{Rρ : ρ ∈ Π∗}| ≤ N2r(r−1). This finishes the proof of

Lemma 4.15, and therefore the proof of Theorem 4.2.

Finally, we remark that this also gives an algorithm with runtime poly(N r2 , d): tracing

back, find the set Π∗ using the above hyperplane argument, and then simply output the

union of vertices of P=
ρ for all ρ ∈ Π∗.

4.6 Conclusion

Motivated by fairness concerns in workload distribution and placement of critical facilities,

we studied portfolios for scheduling with identical jobs (MLIJ) and for covering polyhedra.

We characterized the trade-off between portfolio size and the approximation factors for the

problem of scheduling identical jobs on unidentical machines. Then, we extended the

portfolio size upper bound to covering polyhedra. We state two open questions here:

General COVERINGPOLYHEDRON: For covering polyhedra in dimension d, we im-

proved portfolio sizes from the general bound of poly(d) when the number of constraints

r = o(
√
log d/(log log d)). We conjecture that this is tight up to polylogarithmic factors,

i.e, that there exist covering polyhedra in dimension d with O(log d) constraints such that

any O(log d)-approximate portfolios for symmetric monotonic norms must have polyno-

mial size.

Scheduling with unidentical jobs: We gaveO(1)-approximate portfolios of sizeO(log d)

for MLIJ, i.e., machine load minimization on d machines with identical jobs. It is unclear

if there exists a similar-sized portfolio for the more general problem of machine-load min-

imization with unidentical jobs.
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CHAPTER 5

SIMULTANEOUS APPROXIMATIONS

We next turn our attention to portfolios of size-1, i.e., simultaneous approximations [8, 9]

for symmetric monotonic norms, and show stronger approximation guarantees for specific

problems. We develop an IterativeOrdering framework that unifies simultaneous

approximation algorithms for many combinatorial optimization problems. The key im-

provements we obtain using our framework for symmetric monotonic norms (summarized

in Table 5.1) are:

• COMPLETIONTIMES: For minimizing symmetric monotonic norms of the comple-

tion times of jobs (e.g., jobs on the cloud computing servers [114]) in a schedul-

ing problem, we show the existence of simultaneous 4-approximation and give a

polynomial-time simultaneous 8-approximation. These are the first constant-factor

results for this problem, to the best of our knowledge. We also give an instance (see

Section 5.3) where no simultaneous 1.13-approximation exists. Note the contrast

with the previously discussed problem of minimizing machine loads, where a size-1

portfolio may not even be o(
√
d)-approximate for all symmetric monotonic norms

for d machines, even for identical jobs (i.e, problem MLIJ; see Theorem 4.1).

• ORDEREDSETCOVER: For minimizing symmetric monotonic norms of covering

time of n elements of a ground set, we show the existence of a simultaneous 4-

approximation. Previously, a polynomial time O(log n)-approximation was known

[23], which up to constants is the best possible if P ̸= NP [115]. This result highlights

the difference between existence and polynomial time computable simultaneous ap-

This chapter is based on joint work with Swati Gupta and Mohit Singh. A preliminary version (alongside
Chapter 4) appeared in the Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) 2025
[108]. An extended version is currently under submission.
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proximation.

• ORDEREDTSP: For minimizing symmetric monotonic norms over the time each ver-

tex of a given graph is visited in a Hamiltonian tour, we show the existence of a

5.83-approximation. The previously-known lower bound on the existence of a si-

multaneous approximation is 1.78 [27]. Therefore, ours bridges the gap in the exis-

tence of simultaneous approximations for ORDEREDTSP. The best polynomial-time

approximation remains the 8-approximation of Farhadi et al. [27].

• k-CLUSTERING: For finding k facilities that minimize symmetric monotonic norms

of client distances to open facilities, we give for any ε ∈ (0, 1] a polynomial-time

bicriteria approximation that (a) has objective value within factor 3+ε of the optimal

for any symmetric monotonic norm, and (b) opens at mostO
(
logn
ε

)
·k facilities. This

improves upon the previous bicriteria approximation of [9] that has objective value

bound 6 + ε with the same bound on the number of facilities.

In many such problems, one seeks to meet the demands of some ‘clients’ (jobs in

scheduling, ground set elements in set cover, vertices in TSP etc) and the goal is to mini-

mize some norm of the vector of times each element is ‘satisfied’. For example, in schedul-

ing problems, a job is satisfied when it is completed, in set cover problems, an element is

satisfied when it is covered, and in routing problems, a vertex is satisfied when it is visited,

etc. We recursively solve the problem, by dividing it into smaller subproblems and stitching

the subproblem solution together to get an approximation. The guarantees on satisfaction

times are preserved pointwise1, leading to simultaneous approximation guarantees for all

symmetric monotonic norms. This generalizes the approach of many previous papers, e.g.,

[26, 23, 27]. Besides the traditionally studied notion of polynomial-time computable si-

multaneous approximations, we also providing novel guarantees on the existence of certain

simultaneous approximations.
1That is, if x̃ is the (sorted) approximate vector and x∗ is the (sorted) optimal vector of cover times for

some norm, then we show coordinate-wise bounds such as x̃i ≤ αx∗
i ∀ i ∈ [d].

106



Table 5.1: A summary of simultaneous approximations for symmetric monotonic norms, obtained using the IterativeOrdering
framework. Here, a bicriteria (α, β)-approximation to a k-CLUSTERING problem opens at most βk facilities, while being within factor
α of the optimal solution that opens ≤ k facilities (see Section 5.4), for any symmetric montonic norm. γ is a parameter for composable
problems (see Section 5.1).

Domain/set D
of feasible solutions

Existence
simultaneous

approximation

Polynomial-time
simultaneous

approximation
Reference

γ-COMPOSABLE

problem
This
work (

√
γ + 1)2 - Theorem 5.1

COMPLETIONTIMES

(γ = 1)
This
work 4 8 Theorem 5.1

ORDEREDTSP
(γ = 2)

Previous
work

16 [23]
8 [27]

This
work 3 + 2

√
2 ≃ 5.83 6 + 4

√
2 ≃ 11.66 Theorem 5.1

ORDEREDSETCOVER

(on ground set of n elements)
(γ = 1)

Previous
work O(log n) [23]

This
work 4 - Theorem 5.1

k-CLUSTERING

(on n points,
bicriteria approximations)

Previous
work

(3 + ε,O((log n) + 1/ε)) (9 + ε,O((log n) + 1/ε)) [8](
1 + ε,O

(
logn
ε

)) (
6 + ε,O

(
logn
ε

))
[9]

This
work

(
1 + ε,O

(
logn
ε

)) (
3 + ε,O

(
logn
ε

))
Theorem 5.2
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5.1 IterativeOrdering Framework

This section presents our IterativeOrdering framework to obtain simultaneous ap-

proximations for various combinatorial problems described above. As we will show, all of

these problems (1) involve a set of clients and a set of objects that satisfy clients, and (2)

seek an order on the objects that minimizes the satisfaction time of clients. This is formal-

ized in Definition 5.1. Additionally, such problems are often composable, in the sense that

orders on different subsets of objects can be combined into a single order on the union of

the subsets; this is formalized in Definition 5.2.

Various norms of the vector of satisfaction times correspond to different fairness ob-

jectives and lead to different combinatorial optimization problems. We are interested in

global guarantees, i.e., simultaneous approximations for all symmetric monotonic norms

of this vector. A priori, it is unclear whether a given problem even admits good simul-

taneous approximations, as we showed in Chapter 2, Chapter 3, and Chapter 4. As [23]

note, previous works [26] contain similar algorithmic ideas to obtain polynomial-time si-

multaneous approximations for such problems. We go a step further and formalize the

underlying algorithm as IterativeOrdering, unifying previous approaches and ob-

taining new algorithms. As we show in Theorem 5.1, applying it to COMPLETIONTIMES

gives the first constant-factor simultaneous approximations for this problem. Applying it to

ORDEREDTSP and ORDEREDSETCOVER proves the existence of better-than state-of-the-

art simultaneous O(1)-approximations. Similar ideas apply to k-CLUSTERING problems;

we present improved simultaneous approximation to k-CLUSTERING in Section 5.4.

We begin by formally defining the combinatorial problems considered in this section:

• COMPLETIONTIMES. The input consists of n jobs, dmachines, and processing times

pi,j > 0 for each job j ∈ [n] on machine i ∈ [d]. The output is an assignment of

jobs to machines, and an order on the jobs assigned to each machine. Given a norm
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∥ · ∥ on Rn, the objective is to minimize the norm of the completion times of jobs.2

Special cases include average completion time minimization (for the L1 norm) [13],

and makespan minimization (for the L∞ norm) [116].

• ORDEREDSETCOVER. The input consists of a ground set of n elements and m

subsets S1, . . . , Sm of the ground set. The output is an order on the subsets; each

output induces a vector of cover times of elements in the ground set, defined for an

element as the position of the first set in the order containing it. Given a norm ∥ · ∥

on Rn, the objective is to minimize the norm of cover times. Special cases include

classical Set Cover (for the L∞ norm) [55], and Min-Sum Set Cover or MSSC (for

the L1 norm) [56].

• ORDEREDVERTEXCOVER. This is a special case of ORDEREDSETCOVER where

the ground set corresponds to edges of an undirected graph and the subsets corre-

spond to vertices of the graph. Special cases include classical Vertex Cover (for the

L∞ norm), and Min-Sum Vertex Cover or MSVC (for the L1 norm) [56].

• ORDEREDTSP. The input consists of a metric space on n points or vertices V and

a starting vertex v0 ∈ V . The output is a Hamiltonian tour of the vertices starting

at v0; each tour induces a vector of visit times of the vertices, defined for a vertex

as its distance from v0 along the tour. Given a norm ∥ · ∥ on Rn, the objective is

to minimize the norm of visit times. Special cases include the Traveling Salesman

Problem or TSP (for the L∞ norm) [57], the Traveling Repairman Problem (for the

L1 norm) [58], and the Traveling Firefighter Problem (for the L2 norm) [27].
2Note that this is different from minimizing norms of machine loads that we considered in MLIJ. The two

problems have different fairness interpretations: COMPLETIONTIMES captures fairness for jobs while MLIJ
captures fairness for machines.
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5.1.1 ORDEREDSATISFACTION Problems

Next, we formally define ORDEREDSATISFACTION problems that capture common struc-

ture among the above-mentioned problems.

Definition 5.1. An ORDEREDSATISFACTION problem is specified by

1. A set of clients C.

2. A set X of objects. Each object x ∈ X is associated with a subset C(x) of clients

that it satisfies.

3. Each collection X ⊆ X of objects is called a satisfier, and is said to satisfy the

clients in the union C(X) :=
⋃

x∈X C(x).

4. For each satisfier X ⊆ X and an order π ∈ Perm(X) on X , there is an associated

time vector t(X, π) ∈ RX
≥0 that must satisfy the following downward closure prop-

erty: given any time T ∈ R≥0 define another satisfier XT := {x ∈ T : t(X, π)x ≤

T} ⊆ X with corresponding order πT on XT induced from π. Then we must have

for all x ∈ XT that

t(XT , πT )x ≤ t(X, π)x. (5.1)

For each satisfier X ⊆ X and order π on X , also define the satisfaction time vector

s(X, π) ∈ RC(X)
≥0 as follows: for each client e ∈ C(X), let x ∈ X be the first object in

the order π that satisfies e, i.e., x = argminy∈X:e∈C(y)π(y). Then the satisfaction time

s(X, π)e of client e is defined as

s(X, π)e = t(X, π)x. (5.2)

The goal is to output a satisfier X ⊆ X that satisfies all clients (i.e., C(X) = C) and an

order π on X . The L1 norm or the min-sum objective is to minimize the total satisfaction

time
∑

e∈C s(X, π)e of clients and the L∞ norm or min-max objective is to minimize the
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maximum satisfaction time maxe∈C s(X, π)e of clients across all (X, π). More generally,

given a symmetric monotonic norm ∥ · ∥ on RC , the corresponding objective is to mini-

mize ∥s(X, π)∥. We seek simultaneous approximations with guarantees for all symmetric

monotonic norms.

Lemma 5.1. COMPLETIONTIMES, ORDEREDSETCOVER, ORDEREDVERTEXCOVER,

and ORDEREDTSP are ORDEREDSATISFACTION problems.

We give the proof for COMPLETIONTIMES here, deferring the proof for the other three

problems to Section 5.2.

For COMPLETIONTIMES, choose the set of clients C = [n] as the set of jobs. Choose

the set of objects to be X = [n] × [d] = {(j, i) : j ∈ [n], i ∈ [d]}. The object (j, i)

represents the assignment of job j to machine i; and we defineC(j, i) = {j}, i.e., assigning

job j to machine i satisfies job j. A satisfier X ⊆ X corresponds to a partial assignment,

where some jobs may be unassigned or assigned to multiple machines. Given machine

i ∈ [d], let Ji(X) be the set of jobs assigned to machine i in partial assignment X , i.e

Ji(X) = {j ∈ [n] : (j, i) ∈ X}. Then any order π on X induces an order on Ji(X).

Given (j, i) ∈ X and an order π on X , time t(X, π)(j,i) is defined naturally as the

completion time of job j on machine i, or more formally, as

t(X, π)(j,i) :=
∑

j′∈Ji(X):
π(j′,i)≤π(j,i)

pj′,i, (5.3)

Similarly, the satisfaction time of a job j is the least time across machines when it is com-

pleted: s(X, π)j = mini: j∈Ji(X) t(X, π)(j,i). It is easy to see that the vectors satisfy down-

ward closure (Equation 5.1) with equality: XT is simply the partial assignment for all jobs

that finish under time T .

The goal is to find a schedule (with jobs possibly assigned to multiple machines), i.e.,

a pair (X, π) such that C(X) = [n].
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5.1.2 γ-COMPOSABLE Problems

Given an ORDEREDSATISFACTION problem, consider the following process of composing

subproblems: given satisfiers X1, . . . , Xk ⊆ X with corresponding orders π1, . . . , πk on

them, consider the satisfier
⋃

j∈[k]Xj with a composed order (denoted
⊕

j∈[k] πj) where

every object x ∈ X1 is ordered first according to π1, then every object x ∈ X2 \ X1 is

ordered according to π2, and so on. For example, in COMPLETIONTIMES, this process

corresponds to composing partial assignments one after the other, scheduling the jobs in

the first partial assignment, then those in the next partial assignment, and so on.

In many ORDEREDSATISFACTION problems, including COMPLETIONTIMES, such com-

positions suitably maintain the satisfaction times of the clients. To formalize this, define

the ‘cost’ of a satisfier X and order π as c(X, π) := maxx∈X t(X, π)x. For example, for

COMPLETIONTIMES, c(X, π) is the makespan of the corresponding partial assignment.

Definition 5.2. Given γ ≥ 1, an ORDEREDSATISFACTION problem is called γ-COMPOSABLE

if for all satisfiers X1, . . . , Xk ⊆ X and corresponding orders π1, . . . , πk, the time vector

t (X, π) for the composition X :=
⋃

j∈[k]Xj and π :=
⊕

j∈[k] πj satisfies the following:

for each j ∈ [k] and each object x ∈ Xj \
(⋃

l∈[j−1]Xl

)
, we must have

t (X, π)x ≤ γ

 ∑
l∈[j−1]

c(Xl, πl)

+ t(Xj, πj)x. (5.4)

For example, we show that COMPLETIONTIMES is 1-composable: indeed, if partial

assignments corresponding to (X1, π1), (X2, π2), . . . , (Xk, πk) are put one after the other

to form a composed assignment (X, π), then all jobs j scheduled in (X1, π1) finish by their

completion time in partial assignment (X1, π1), all jobs j scheduled in (X2, π2) finish by

time (makespan of (X1, π1) + completion time of j in (X2, π2)), and so on.

We show in Section 5.2 that ORDEREDSETCOVER and ORDEREDVERTEXCOVER are

both 1-composable and ORDEREDTSP is 2-composable.
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Lemma 5.2. COMPLETIONTIMES, ORDEREDSETCOVER, and ORDEREDVERTEXCOVER

are 1-composable and ORDEREDTSP is 2-composable.

The next lemma follows from various definitions; we include its proof in Section 5.2.

Lemma 5.3. Suppose we are given satisfier X ⊆ X , order π on X , and T > 0 for an

ORDEREDSATISFACTION problem. Define XT = {x ∈ X : t(X, π)x ≤ T}, and let the

restriction of π to T be denoted πT . Then

1. c(XT , πT ) ≤ T

2. The number of clients |C(XT )| satisfied byXT is at least the number of clients (X, π)

satisfies within time T , i.e.

|C(XT )| ≥ |{e ∈ C(X) : s(X, π)e ≤ T}| .

5.1.3 Algorithm IterativeOrdering

In this subsection, we give simultaneous approximation algorithm IterativeOrdering

for γ-COMPOSABLE problems. We show the existence of a simultaneous (
√
γ + 1)2-

approximation, leading to various approximations for different combinatorial optimization

problems.

Formally, given an approximation ratio α ≥ 1, a simultaneous α-approximation for an

ORDEREDSATISFACTION problem is a satisfier X ⊆ X and an order π on X such that

C(X) = C and for any other X ′, π′ with C(X ′) = C, and for any symmetric monotonic

norm ∥ · ∥ on RC , the corresponding satisfaction times of clients satisfy

∥s(X, π)∥ ≤ α∥s(X ′, π′)∥.

We need one last piece of the framework to state algorithm IterativeOrdering.

Given a γ-COMPOSABLE problem and some budget B, consider the satisfier X ′ ⊆ X and
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Algorithm 4 IterativeOrdering(β)
input: A γ-COMPOSABLE problem and parameter β ≥ 1
output: A satisfier X ⊆ X and order π on X such that C(X) = C

1: set θ =
√
γ + 1

2: j ← 0
3: while

⋃
l∈[0,j−1]C(Xl) ̸= C do

4: set budget B = θj

5: find (β,B)-satisfier Xj and corresponding order πj
6: increase counter j ← j + 1

7: define satisfier X =
⋃

i∈[0,j]Xi and composed order π ← ⊕i∈[0,j]πi
8: return X and π

order π′ on X ′ that satisfies as many clients |C(X ′)| as possible under the cost constraint

c(X ′, π′) ≤ B. Consider the following relaxation: given β ≥ 1, we call another satisfier X

and order π on X a (β,B)-satisfier if c(X, π) ≤ βB and |C(X)| ≥ |C(X ′)|, i.e., (X, π)

has cost within factor β of the budget B and satisfies at least as many clients as (X ′, π′).

Of course, (X ′, π′) (corresponding to β = 1) can always be found using an exhaustive

search for any (finite) problem, but this search may take time exponential in the input size.

For example, for COMPLETIONTIMES, this search for (X ′, π′) for a given B amounts to

searching over all possible partial assignments with makespan ≤ B. As we show later,

this is still useful in obtaining our results for the existence of simultaneous approximations.

For many problems, choosing a larger β allows finding a (β,B)-satisfier in polynomial-

time, e.g., β = 2 for ORDEREDTSP and COMPLETIONTIMES (see Section 5.2). This

difference accounts for the gap between our approximations for existence and polynomial-

time algorithms.

Algorithm IterativeOrdering is inspired by [26]’s algorithm for the Traveling

Repairman Problem (TRP), which was subsequently also used for ORDEREDSETCOVER,

ORDEREDVERTEXCOVER by [23], who also mention its applicability to similar covering

problems. It takes as input a γ-composable problem with β ≥ 1, and constructs a simul-

taneous β(
√
γ + 1)2-approximation to the problem. Choosing β = 1 gives the existence

results while choosing appropriate β > 1 gives polynomial-time results. We assume by
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re-scaling all costs that the minimum non-zero cost c(X, π) across satisfiers X ⊆ X and

orders π on X is 1.

Lemma 5.4. Given a γ-COMPOSABLE problem and β ≥ 1, IterativeOrdering

gives a simultaneous
(
β(
√
γ + 1)2

)
-approximation.

Proof. Suppose there were k total iterations in IterativeOrdering; then the output

satisfier is X =
⋃

j∈[0,k]Xj and corresponding order is π =
⊕

j∈[0,k] πj .

Fix symmetric monotonic norm ∥·∥. Let the optimal solution for this norm be (X∗, π∗).

We will show that for all T > 0, if (X∗, π∗) satisfies i clients within time T , then (X, π)

satisfies ≥ i clients within time β(
√
γ + 1)2T . Given corresponding satisfaction time

vectors s(X, π), s(X∗, π∗) ∈ RC ; this is equivalent to saying that for any i ∈ {1, . . . , |C|},

the ith smallest entry of s(X, π) is at most β(
√
γ + 1)2 times the ith smallest entry of

s(X∗, π∗). Since ∥ ·∥ is symmetric and monotone, this implies that (X, π) is a β(
√
γ+1)2-

approximation.

Given T > 0, define X∗
T := {x ∈ X∗ : t(X∗, π∗)x ≤ T}, and let π∗

T be the restriction

of π∗ to X∗
T . Then, by Lemma 5.3,

c(X∗
T , π

∗
T ) ≤ T. (5.5)

Also by the same lemma,

|C(X∗
T )| ≥ |{e ∈ C(X∗) : s(X∗, π∗)e ≤ T}| := i. (5.6)

Let j ∈ Z≥0 be the unique integer such that T ∈ (θj−1, θj]. Then, by definition of a

(β,B)-satisfier, in iteration j of the algorithm, we get (Xj, πj) such that (a) c(Xj, πj) ≤

βθj , and (b) |C(Xj)| ≥ |C(X∗
T )| ≥ i.

For all clients e ∈ C(Xj), γ-composability implies that the satisfaction time s(X, π)e ≤

γ
(∑

l∈[0,j−1] c(Xl, πl)
)
+ c(Xj, πj). Since the cost c(Xl, πl) ≤ βθl for all l ∈ [0, k], we

115



have

s(X, π)e ≤ γ

 ∑
l∈[0,j−1]

βθl

+ βθj ≤ β

(
γ

θj

θ − 1
+ θj

)
= θj−1 × βθ

(
γ

θ − 1
+ 1

)
.

Therefore, (X, π) satisfies at least |C(Xj)| ≥ i clients within time βθ
(

γ
θ−1

+ 1
)
× θj−1 <

βθ
(

γ
θ−1

+ 1
)
× T . Since θ =

√
γ + 1, we have θ

(
γ

θ−1
+ 1
)
= (
√
γ + 1)2.

This leads to the following results proving the existence of various simultaneous ap-

proximations, and a polynomial-time 8-approximation for COMPLETIONTIMES:

Theorem 5.1. 1. For any γ-COMPOSABLE problem, there always exists a simultaneous

(
√
γ + 1)2-approximation.

2. For ORDEREDSETCOVER, ORDEREDVERTEXCOVER, and COMPLETIONTIMES,

there always exists a simultaneous 4-approximation.

3. For ORDEREDTSP, there always exists a simultaneous (3 + 2
√
2)-approximation.

4. For COMPLETIONTIMES, a simultaneous 8-approximation can be found in polynomial-

time.

Part 1 of the theorem follows by choosing β = 1 in Lemma 5.4 and parts 2 and

3 follow from our observations in Lemma 5.2 that ORDEREDSETCOVER, ORDERED-

VERTEXCOVER, and COMPLETIONTIMES are 1-composable while ORDEREDTSP is 2-

composable.

The proof of the last part involves giving a subroutine for COMPLETIONTIMES that

outputs a (2, B)-satisfier for each budgetB > 0. This is equivalent to asking the following:

given a time limit B, schedule as many given jobs as possible on the machines. We show

that [106]’s 2-approximation for makespan minimization generalizes to this setting (proof

of the lemma in Section 5.2):
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Lemma 5.5. Given processing times pi,j for jobs j ∈ [n] on machines i ∈ [d], and a

time budget B, there exists a polynomial-time algorithm to find a partial schedule that (1)

finishes within time 2B, (2) schedules at least as many jobs as any partial schedule that

finishes within time B.

5.2 Omitted Proofs from Section 5.1

We complete the proof of various lemmas in Section 5.1 on IterativeOrdering.

Proof of Lemma 5.1. The proof for COMPLETIONTIMES was supplied in the previous sec-

tion. Further, ORDEREDVERTEXCOVER is a special case of ORDEREDSETCOVER. There-

fore, it suffices to complete the proof for ORDEREDSETCOVER and ORDEREDTSP.

- ORDEREDSETCOVER. Given the ground setE = {e1, . . . , en} and subsets S1, . . . , Sm

⊆ E, choose the set of clients C as the ground set E, the set of objects X as the set

{S1, . . . , Sm} of subsets, with C(Si) = Si for all i. Given any satisfier X ⊆ X and order

π on X , define the time t(X, π)Si
for Si ∈ X to be the position π(Si) of Si in π. Then

the satisfaction time of an element e ∈ C(X) =
⋃

S∈X S is precisely the cover time of the

element.

Further, given a T > 0, XT is simply the first T subsets in X according to order π,

and clearly, t(XT , πT )Si
= t(X, π)Si

= π(Si) for all such subsets Si ∈ XT . This proves

downward closure.

- ORDEREDTSP. Given a metric on vertices V and starting vertex v0, choose the set of

clients C as V , and the set of objects X as V also, with C(v) = {v} for all v ∈ X . Given

any satisfier X ⊆ X , any order π on X corresponds to a path consisting of the vertices

of X . We define the time t(X, π)v as follows: if π does not start at v0 or if v0 ̸∈ X , then

t(X, π)v =∞ for all v ∈ X . This is to disallow paths that do not start at the starting vertex

v0. If π starts at v0, then define t(X, π)v to be the length of the path from v0 to v. Since

C(v) = {v} for all v ∈ V , the satisfaction time of a vertex v ∈ X is the same as t(X, π)v.
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We prove downward closure next: given a T > 0 and (X, π), if π does not start at v0,

then XT = ∅, and downward closure holds trivially. Otherwise, XT is precisely the set of

vertices within distance T of the starting vertex v0 along path π, and t(XT , πT )v = t(X, π)v

for all v ∈ XT .

Proof of Lemma 5.2. As before, it suffices to complete the proof for ORDEREDSETCOVER

and ORDEREDTSP.

- ORDEREDSETCOVER. Given satisfier X of subsets of the ground set and order π on

X , the cost c(X, π) = maxSi∈X π(Si) = |X| is simply the size of X . Consider satisfiers

X1, . . . , Xk, corresponding orders π1, . . . , πk, and some S ∈ Xj \ (X1 ∪ · · · ∪Xj−1). For

the composed satisfier X =
⋃

l∈[k]Xl, and the composed order π =
⊕

l∈[k] πl, we have that

t(X, π)S = π(S) is the position of S in the order when all subsets in X1 are ordered first,

all subsets in X2 \X1 are ordered next, and so on. Therefore,

t(X, π)S ≤ |X1|+ · · ·+ |Xj−1|+ πj(S) = c(X1, π1) + · · ·+ c(Xj−1, πj−1) + t(Xj, πj)S.

ORDEREDTSP. Given satisfier X ⊆ V and path π on X , the cost c(X, π) = ∞ if

the path does not start at v0 and c(X, π) is the length of the path otherwise. Composing

paths π1, . . . , πk on vertex setsX1, . . . , Xk respectively that each starts at v0 amounts to the

following: start at v0, complete path π1, and return to v0, the complete path π2 and return

to v0 again, and so on, shortcutting any vertices visited a second time.

Then, given a vertex v visited in path πj , the length of the path from v0 to v in this

composed path is at most 2(length(π1) + · · · + length(πj−1)) + length from v0 to v in πj ,

which is precisely 2
(∑

l∈[j−1] c(Xl, πl)
)
+ t(Xj, πj)v.

Proof of Lemma 5.3. For part 1, by definition, c(XT , πT ) = maxx∈XT
t(XT , πT )x. By

downward closure, t(XT , πT )x ≤ t(X, π)x for all x ∈ XT . However, XT was defined

as {x ∈ X : t(X, π)x ≤ T}, and thus c(XT , πT ) ≤ T .

Part 2: for each client e satisfied within time T by (X, π), by definition of satisfaction
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time there is some object x ∈ X with t(X, π)x ≤ T . Therefore, x ∈ XT and so e ∈ C(XT ),

i.e., |C(XT )| is at least the number of clients satisfied by (X, π) within time t.

Proof of Lemma 5.5. Given processing times p and budget B ≥ 0, consider the following

linear programming relaxation of the problem:

max
∑
i,j

xi,j s.t. (LP-PS)

∑
j

pi,jxi,j ≤ B ∀ i ∈ [d], (5.7)

∑
i

xi,j ≤ 1 ∀ j ∈ [n], (5.8)

xi,j = 0 if pi,j > B ∀ i, j, (5.9)

x ≥ 0.

Variable xi,j indicates whether or not job j has been assigned to machine i. The objective is

to maximize the number of jobs scheduled under the constraint that the makespan is at most

B. However, to ensure that the optimal solution does not schedule a cheap job multiple

times, we include (Equation 5.8). Further, job j should not be scheduled on machine i

if pi,j exceeds the makespan B (Equation 5.9). The optimal solution OPT to the partial

scheduling problem clearly satisfies these constraints, and therefore OPT ≤
∑

i,j x
∗
i,j for

the (fractional) optimal solution x∗ to the LP.

We will round x∗ to an integral solution x with makespan ≤ 2B and
∑

i,j xi,j ≥∑
i,j x

∗
i,j implying that x schedules at least as many jobs as OPT, completing the proof.

Let ki = ⌈
∑

j x
∗
i,j⌉ for all i. We will construct an undirected bipartite graph G with

n + k1 + · · · + kd vertices: n vertices correspond to jobs and ki vertices correspond to

machine i for all i.

Fix machine i. Let Ji = {j : x∗i,j > 0} be the set of jobs (fractionally) assigned to i

under x∗, and relabel them so that Ji = {1, 2, . . . , l}; assume without loss of generality that
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pi,1 ≥ · · · ≥ pi,l. Let v1, . . . , vki be the vertices corresponding to machine i. Start assigning

weights x∗i,1, x
∗
i,2, . . . to edges v11, v12, . . . , until we reach a job a such that x∗i,1 + x∗i,2 +

· · ·+ x∗i,a > 1. Assign weight 1−
∑

b≤a−1 x
∗
i,b, i.e., just enough weight that makes the total

weight of edges incident to v1 exactly 1. The remaining weight for job a,
∑

b≤a x
∗
i,b − 1

goes to edge v2a. Continue this process with job a + 1 on vertex v2, and so on. Since∑
j∈Ji x

∗
i,j ≤ ki, weight x∗i,l is assigned to edge vk1l. Notice that for each of v1, . . . , vki , the

sum of weights of edges incident on it is at most 1. Do this for all vertices to get graph G,

and denote the weights in G by w.

By construction, the sum of weights of edges incident on a vertex is at most 1 if it

corresponds to a machine. From Equation 5.8 and the construction, the sum of weights of

edges incident on vertices corresponding to jobs is also at most 1. Therefore, w forms a

fractional matching on G. Further, the sum of all edge weights, ∥w∥1, is
∑

i,j x
∗
i,j . Since

G is bipartite, this fractional matching can be rounded to an integral matching y at least as

large as w, i.e., ∥y∥1 ≥ ∥w∥1. Obtain integral solution x by assigning jobs to machines

according to matching y, i.e., if job j is adjacent to a vertex corresponding to machine i,

assign xi,j = 1; assign xi,j = 0 in all other cases. Then we have that
∑

i,j xi,j = ∥y∥1 ≥

∥w∥1 =
∑

i,j x
∗
i,j .

It remains to argue that the makespan to each machine is at most 2B. Fix machine

i. Suppose jobs j1, . . . , jki are adjacent to vertices v1, . . . , vki respectively in matching y.

Then, since jobs were sorted in decreasing order, the processing time pi,j2 is upper bounded

by the processing time of jobs adjacent to v1 in G:

pi,j2 = pi,j2
∑

j:w(v1j)>0

w(v1, j) ≤
∑

j:w(v1j)>0

pi,jw(v1, j).

Similarly, for each b ∈ [2, jki ], we get pi,jb ≤
∑

j:w(vb−1,j)>0 pi,jw(vb−1, j). Adding these,

∑
a∈[2,ki]

pi,ja ≤
∑

a∈[2,ki]

∑
j:w(vb−1,j)>0

pi,jw(vb−1, j) ≤
∑
j∈Ji

pi,jx
∗
i,j ≤ B.
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Since pi,j1 ≤ B by Equation 5.7, we get the total makespan on machine i under x is

pi,j1 +
∑

a∈[2,ki]

pi,ja ≤ 2B.

5.3 Lower Bounds for Simultaneous Approximations

We give two lower bounds on best-possible simultaneous approximations here, for OR-

DEREDVERTEXCOVER and COMPLETIONTIMES, respectively.

Observation 5.1. There exists an instance of ORDEREDVERTEXCOVER where no solu-

tion is better than 9/8-simultaneous approximate for the L1 and L∞ norms (i.e., Min-Sum

Vertex Cover and classical Vertex Cover).

Figure 5.1: The vertex cover instance used in proof of Observation 5.1.

Proof. Consider the following instance: the graph as 2n + 1 vertices v0, . . . , v2n with ver-

tices v1, . . . , v2n forming cycle and vertex v0 connected to each of v1, v3, . . . , v2n−1 (Fig-

ure 5.1(a)).

The smallest vertex cover is {v1, v3, . . . , v2n−1} (Figure 5.1(b)), and it is the only vertex

cover of size n. Therefore, any other vertex cover is at best a n+1
n

-approximation. When

n = 8, this is 9/8.

We show that this vertex cover is a 9/8-approximation for MSVC when n = 8. Irre-

spective of the order of the vertices in this vertex cover, exactly 3 edges are covered by each
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time step. Therefore, the total cover time of the edges is 3 × (1 + . . . + n) = 3
2
n(n + 1).

When n = 8, this is 108.

However, if we instead use the cover (v0, v1, v3, . . . , v2n−1) (Figure 5.1(c)) in this order,

n edges are covered at the first step, and 2 edges are covered in each subsequent step,

resulting in total cover time of n + 2(2 + . . . + (n + 1)) = n(n + 4). When n = 8, this is

96 = 8
9
× 108.

Next, we show a similar bound for COMPLETIONTIMES:

Observation 5.2. There exists an instance of COMPLETIONTIMES where no solution is

better than 1.13-simultaneous approximate for the L1 and L∞ norms (i.e., average com-

pletion time minimization and makespan minimization).

Proof. Consider an instance with two machines (labeled A,B) and three jobs. Let µ, δ ∈

[0, 1) be parameters we fix later. Jobs 1, 2 both have processing time 1 on machine A and

processing time 1 + δ on machine B. Job 3 has processing time 1 + µ on machine A and 2

on machine B.

Consider solutions where jobs 1, 2 are on different machines. Then, the optimal solution

(for both makespan minimization and average completion time minimization) is to place

job 3 is on machine A. The makespan for this solution is 2 + µ, and the total completion

time is 1 + (2 + µ) + (1 + δ) = 4 + µ+ δ:

MS1 = 2 + µ, CT1 = 4 + µ+ δ.

Suppose jobs 1, 2 are both on machineA now. The optimal solution (for both makespan

and total completion time) is to place job 3 is on machine B. The makespan and total

completion time are respectively

MS2 = 2, CT2 = 5.
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Suppose jobs 1, 2 are both on machine B. The optimal solution is to place job 3 is on

machine A. The makespan and total completion time are:

MS3 = 2(1 + δ), CT3 = 3(1 + δ) + (1 + µ) = 4 + µ+ 3δ.

Therefore, when µ + δ ≤ 1, the second solution has optimal makespan 2 and the first

solution has the optimal average completion time. The simultaneous approximation ratio

of the first solution is 2+µ
2

. The simultaneous approximation ratio of the second solution is

5
4+µ+δ

. The simultaneous approximation ratio of the third solution is max
(
1 + δ, 4+µ+3δ

4+µ+δ

)
.

The best possible simultaneous approximation ratio then is

min

(
2 + µ

2
,

5

4 + µ+ δ
,max

(
1 + δ,

4 + µ+ 3δ

4 + µ+ δ

))
.

Maximizing this over all µ, δ such that 0 ≤ µ, δ and µ + δ ≤ 1, we get the value
√
61−1
6

>

1.13 at (µ, δ) =
(√

61−7
3

,
√
61−7
6

)
.

5.4 k-CLUSTERING and UNCAPACITATEDFACILITYLOCATION

In this section, we consider k-CLUSTERING and UNCAPACITATEDFACILITYLOCATION

that we formally defined in Section 2.2 and studied in Chapter 3. Recall that we are given a

metric space (C ∪F,dist) on |C ∪F | = n points with clients C and potential open facil-

ities F , and are required to choose a subset F ′ ⊆ F of them. The induced distance vector

xF
′ ∈ RC is defined as the vector of distances between point j and its nearest open facility,

i.e., xF ′
j = minf∈F ′ dist(j, f) for all j ∈ X . Given a norm ∥ · ∥ on RC , k-CLUSTERING

seeks to open a set F ′ of at most k facilities to minimize ∥xF ′∥, while UNCAPACITATED-

FACILITYLOCATION allows any number of facilities to open but penalizes the number of

open facilities through the combined objective function |F ′|+ ∥xF ′∥.3

3Note that we allowed for facility opening costs in the definition of UNCAPACITATEDFACILITYLOCA-
TION in Section 2.2 and Chapter 3; here we restrict to the uniform cost case, where each facility has cost 1 to
open.
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For k-CLUSTERING, we consider more general bicriteria (α, β)-approximations with

objective value within factor α of the optimum but that violate the bound on the number of

open facilities by a factor β. [23] show that any solution to k-CLUSTERING that is simulta-

neously O(1)-approximate for symmetric monotonic norms must open at least Ω(k log n)

facilities, i.e., violate the size bound by factor β = Ω(log n).

Fix any ε ∈ (0, 1]. Using ideas similar to IterativeOrdering, we give the algo-

rithm IterativeClustering that finds a solution with at most O
(
k logn

ε

)
open facili-

ties that is simultaneously (1+ε)-approximate for all symmetric monotonic norms, match-

ing the result of [9]. In polynomial time, IterativeClustering finds a solution that

is (3 + ε)-approximate, improving the previous (6 + ε)-approximation of [9].

We remark that – as pointed out to us by a reviewer from STOC 2024 – carefully

combining the rounding techniques from [106] and the linear program for top-ℓ norm min-

imization from [20] matches our polynomial-time bound, and gives an even better (2 + ε)-

approximation if facilities are also allowed to open in client set C. Our algorithm general-

izes to the setting when C ̸⊆ F and is a natural extension of the IterativeOrdering

framework that emphasizes common structure across different combinatorial problems.

We also show that the above result for k-CLUSTERING leads to anO(log n)-approximate

portfolio of size O(log n) for UNCAPACITATEDFACILITYLOCATION, the first such result

for symmetric monotonic norms to our knowledge.

5.4.1 k-CLUSTERING

We prove the following result:

Theorem 5.2. For k-CLUSTERING, Algorithm IterativeClustering gives

1. a simultaneous bicriteria
(
1 + ε,O

(
logn
ε

))
-approximation in finite time, and

2. a simultaneous bicriteria
(
3 + ε,O

(
logn
ε

))
-approximation can in polynomial-time.
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Algorithm 5 PartialClustering((C ∪ F,dist), k, R, α)

input A metric space (C ∪ F,dist), integer k ≥ 1, radius R ≥ 0, parameter α ≥ 1
output A set G ⊆ F of k facilities that contains at least as many clients within distance
αR as contained by any other set G′ ⊆ F of k facilities within distance R, i.e.,

|B(G,αR)| ≥ max
G′∈(Fk)

|B(G′, R)| .

Algorithm 6 IterativeClustering((C ∪ F,dist), k, ε, α)
input A metric space (C ∪ F,dist) on n points, integer k ≥ 1, parameter ε > 0,
parameter α ≥ 1
output A set F ′ ⊆ F of O

(
k logn

ε

)
facilities

1: F ′ ← ∅
2: R0 =

Dε
n

, where D is the k-center optimum for (C ∪ F,dist)
3: for l = 0, 1, . . . , log1+ε(n/ε) do
4: R← R0(1 + ε)l

5: Fl ← PartialClustering((C ∪ F,dist), k, R, α)
6: F ′ ← F ′ ∪ Fl

7: return F ′

Broadly, IterativeClustering iteratively combines solutions that each contain

k facilities. Each of these solutions corresponds to a radius R, and subroutine Partial

-Clustering attempts to get the set of k facilities that covers the largest number of

points within radiusR. As with IterativeOrdering, radiusR increases exponentially

across iterations.

For polynomial-time computations, PartialClustering cannot be solved exactly

since it generalizes the k-center problem. To get efficient algorithms, we allow it to output

k facilities that cover as many points within radius αR as those covered by any k facili-

ties within radius R. As [8] note, [117] give an approximation algorithm for Partial

-Clustering for α = 3, which we state in a modified form:

Lemma 5.6 (Theorem 3.1, [117]). There exists a polynomial-time algorithm that given

metric (C ∪ F,dist), integer k ≥ 1, and radius R, outputs k facilities that cover at least

as many points within radius 3R as those covered by any set of k facilities within radius R.

That is, subroutine PartialClustering runs in polynomial-time for α = 3.

125



We give some notation: given nonempty F ′ ⊆ F and some radius R ≥ 0, we denote

by B(F ′;R) the set of all clients within distance R of F ′, i.e., B(F ′;R) = {j ∈ C : ∃ f ∈

F ′ with dist(j, f) ≤ R}. We say that a set of facilities F ′ covers p points within radius

R if |B(F ′;R)| ≥ p.

Let D denote the k-center optimum for (C ∪ F,dist). By definition, there are k fa-

cilities that can cover all of C within radius D. Therefore, the largest radius we need to

consider is D. What is the smallest radius we need to consider? Since all of our objective

norms are monotonic and symmetric, points covered within very small radii do not con-

tribute a significant amount to the norm value. Therefore, we can start at a large enough

radius, which has been set to Dε
n

with some foresight. We will first prove the following

claim:

Claim 5.1. For parameter α ≥ 1, IterativeClustering gives a simultaneous bicri-

teria
(
α(1 + 2ε), O

(
logn
ε

))
-approximation for symmetric monotonic norms.

Proof. We first show that the number of facilities output by the algorithm isO
(
k logn

ε

)
. The

number of iterations in the for loop is log(1+ε)

(
n
ε

)
= O

(
logn
ε

+ log(1/ε)
ε

)
. When ε > 1

n
,

this expression is O
(
logn
ε

)
. Since each iteration adds at most k facilities to C, we are done

in this case. When ε ≤ 1
n

, then k logn
ε
≥ n, that is, all facilities can be opened anyway.

Fix any symmetric monotonic norm ∥·∥ on RC , and let OPT denote the optimal solution

for this norm and xOPT ∈ RC denote the corresponding distance vector. Let the distance

vector for facilities C output by the algorithm be x. We need to show that ∥x∥ ≤ α(1 +

2ε)∥xOPT∥.

By definition, (xOPT)↑1 ≤ (xOPT)↑2 ≤ · · · ≤ (xOPT)↑|C|. Let j∗ be the smallest index

such that (xOPT)↑j∗ > R0 = Dε
n

. Since ∥ · ∥ is symmetric, we have ∥x↑∥ = ∥x∥ and

∥(xOPT)↑∥ = ∥xOPT∥. Our twofold strategy is to show that:

1. for all j ≥ j∗,

(x)↑j ≤ α(1 + ε)(xOPT)↑j , (5.10)
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2. the contribution of x↑1, . . . , x
↑
j∗−1 to ∥x∥ is small; specifically,

∥∥∥(x↑1, . . . , x↑j∗−1, 0, . . . , 0
)∥∥∥ ≤ αε∥xOPT∥. (5.11)

Consider the first part. We haveR0(1+ε)
log1+ε(n/ε) = R0

n
ε
= D. That is, in the final it-

eration of the for loop,R = D. Therefore, by definition ofD and PartialClustering,

Fl in this iteration covers all of X within radius αD. That is, ∥x∥∞ ≤ αD since Fl ⊆ F ′.

fix some j ≥ j∗, and let l ≥ 0 be the smallest integer such that (xOPT)↑j ≤ R0(1+ε)
l. If

l ≥ 1+log1+ε(n/ε), then (xOPT)↑j > R0(1+ε)
l−1 = D. Since ∥x∥∞ ≤ αD, Equation 5.10

holds in this case.

Otherwise, l ≤ log1+ε(n/ε). The k facilities in OPT cover at least j points within

radius R = R0(1 + ε)l. By definition of PartialClustering, in iteration l of the

for loop, Fl covers at least j points within radius αR. Since Fl ⊆ F ′, F ′ also covers

at least j points within radius αR, so that x↑j ≤ αR = R0(1 + ε)l. By definition of l,

(xOPT)↑ > R0(1 + ε)l−1, and so

x↑j ≤ αR0(1 + ε)l ≤ α(1 + ε)(xOPT)↑j .

We move to Equation 5.11. By definition of j∗, OPT covers at least j∗−1 points within

radius R0. In iteration 0, by definition of PartialClustering, F0 (and therefore F ′)

covers at least (j∗ − 1) points within radius αR0. That is, x↑j∗−1 ≤ αR0.

Denote (1, 0, . . . , 0) = e. Since ∥ · ∥ is monotonic and D is the k center optimum,

∥xOPT∥ ≥
(
∥xOPT∥∞, 0, . . . , 0

)
∥e∥ ≥ D∥e∥. Therefore,

∥∥∥(x↑1, . . . , x↑j∗−1, 0, . . . , 0
)∥∥∥ ≤ ∑

j∈[j∗−1]

x↑j∥e∥ (triangle inequality)

≤
∑

j∈[j∗−1]

αR0∥e∥ (x↑j∗−1 ≤ αR)
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< nα
Dε

n
∥e∥ (j∗ ≤ n)

≤ αε∥xOPT∥. (∥xOPT∥ ≥ D∥e∥)

Together, Equation 5.10 and Equation 5.11 imply that

∥x∥ ≤
∥∥∥(x↑1, . . . , x↑j∗−1, 0, . . . , 0

)∥∥∥+ ∥∥∥(0, . . . , 0, x↑j∗ , . . . , x↑n)∥∥∥
≤ αε∥xOPT∥+ α(1 + ε)

∥∥∥(0, . . . , 0, (xOPT)↑j∗ , . . . , (x
OPT)↑n

)∥∥∥
≤ αε∥xOPT∥+ α(1 + ε)∥xOPT∥ = α(1 + 2ε)∥xOPT∥.

The first inequality is the triangle inequality, the second follows from Equation 5.10 and

Equation 5.11, and the last inequality follows since ∥ · ∥ is symmetric monotonic.

With this result in hand, our main theorem is simple to derive: we choose α = 1 in the

claim with ε/2 as the parameter for the existence result. We choose α = 3 in the claim

with ε/6 as the parameter for the polynomial-time result; Lemma 5.6 guarantees that the

algorithm is polynomial-time.

5.4.2 UNCAPACITATEDFACILITYLOCATION

First, we note that a single solution cannot be better than Ω(
√
n)-approximate for even

the L1 and L∞ norms: suppose the metric is a star metric with n, with C = F so that

|C| = |F | = n. The distance from the center to each leaf is
√
n. Then the optimal L1

solution is to open each facility, and the cost of this solution is n + 1. The optimal L∞

solution is to open just one facility at the center, the cost of this solution is 1 +
√
n. Now,

any solution that opens fewer than n/2 facilities has cost ≥ n/2 + (n/2)
√
n = Ω(n

√
n)

for the L1 norm and therefore is an Ω(
√
n)-approximation. Any solution that opens ≥ n/2

facilities is an Ω(
√
n)-approximation for the L∞ norm. A similar example was noted for

k-clustering in [9].

This motivates us to seek larger portfolios and get a smaller approximation. The main
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theorem of this section gives an O(log n)-approximate portfolio of size O(log n) for UN-

CAPACITATEDFACILITYLOCATION:

Theorem 5.3. There exists a polynomial-time algorithm that given any instance of UNCA-

PACITATEDFACILITYLOCATION on n points, outputs an O(log n)-approximate portfolio

of size O(log n) for symmetric monotonic norms.

Proof. Assume without loss of generality that the number of points n is a power of 2.

Choose solutions corresponding to k = 20, 21, 22, . . . , 2log2 n with ε = 1 in Theorem 5.2

part 2. There are O(log n) of these, and the theorem asserts that they can be found in poly-

nomial time. We claim that these form an O(log n)-approximate portfolio for symmetric

monotonic norms.

Fix a symmetric monotonic norm ∥ · ∥, and suppose the optimal solution OPT for this

norm opens k∗ ∈ [n] facilities. Let l be the unique integer such that 2l−1 < k∗ ≤ 2l,

i.e., l = ⌈log2 k∗⌉. We show that the solution corresponding to k = 2l in our portfolio

is an O(log n)-approximation for ∥ · ∥. Add arbitrary 2l − k∗ facilities to OPT; this only

decreases the induced distance vector xOPT. For this new set of facilities, Theorem 5.2

guarantees that ∥x∥ ≤ 4∥xOPT∥. Therefore, the objective value of the portfolio solution is

O(log n) · 2l + ∥x∥ = O(log n)
(
k∗ + ∥xOPT∥

)
= O(log n) ·OPT.

5.5 Conclusion

We presented a unified framework for simultaneous approximations for combinatorial op-

timization problems, and gave several new and improved approximation algorithms using

our framework. Several questions remain open:

Determining best-possible simultaneous approximations. For ORDEREDTSP, it is un-

likely that our simultaneous 5.83-approximation is the best-possible, since the only known

lower bound on this number is 1.78 [27]. It would be interesting to close this gap in either
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direction. Similarly, it is unclear if our simultaneous 4-approximation for COMPLETION-

TIMES or for ORDEREDSETCOVER is tight.

Gap between computability and existence. For simultaneous approximations, there is

also a gap between existence bounds and polynomial-time bounds (see Table Table 5.1).

For ORDEREDSETCOVER, this gap (factor 4 vs O(log n), respectively) is explained by

complexity theoretic conjectures; however, it is unclear why this gap exists for other prob-

lems, such as ORDEREDTSP (factor 5.83 vs 8 respectively) and COMPLETIONTIMES (fac-

tor 4 vs 8 respectively).
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CHAPTER 6

MAXIMIZATION PORTFOLIOS, p-MEANS, AND REINFORCEMENT

LEARNING

6.1 Introduction

In this chapter, we study portfolios for p-mean functions Mp(z) :=
(

1
d

∑
i∈[d] z

p
i

)1/p
for

each p ≤ 1 and z ∈ Rd
>0. In particular, we study a reinforcement learning (RL) setting

where a deployed policy impacts multiple stakeholders in different ways. Each stakeholder

is associated with a unique reward function, and the goal is to train a policy that adequately

aggregates their preferences.

This setting is often modeled using Multi-objective reinforcement learning (MORL)

and arises in many RL applications, such as fair resource allocation in healthcare [40],

cloud computing [119, 120], and communication networks [121, 122]. Recently, with

the rise of large language models (LLMs), Reinforcement learning with human feedback

(RLHF) techniques that reflect the preferences of heterogeneous individuals have also been

explored [123, 124, 125].

Preference aggregation in such scenarios is often achieved by choosing a social welfare

function, which takes the utilities of multiple stakeholders as input and outputs a scalar

value representing the overall welfare [126, 42, 40, 41, 124, 125, 123]. However, selecting

the appropriate social welfare function is a nontrivial task. Different functions encode

distinct fairness criteria, and the resulting policies can lead to vastly different outcomes for

stakeholders depending on the choice of the social welfare function.

We focus on p-means, which are a widely used class of social welfare functions in al-

This chapter is based on joint work with Cheol Woo Kim, Shresth Verma, Madeleine Pollack, Lingkai
Kong, Milind Tambe, and Swati Gupta. A version of this chapter appeared in the Proceedings of the Forty-
Second International Conference on Machine Learning (ICML) 2025 [118]. Cheol Woo Kim is an equal
contribution lead co-author.
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gorithmic fairness and social choice theory. Each choice of p represents a distinct notion of

fairness, and the p-means unify commonly used welfare functions such as egalitarian wel-

fare (p = −∞), Nash welfare (p = 0), and utilitarian welfare (p = 1), providing a smooth

transition between these principles. Notably, this is known to be the only class of social

welfare functions that satisfy several key axioms of social welfare, such as monotonicity,

symmetry, and independence of scale [127, 128, 129, 130].

In practice, the right choice of p is often unclear in advance, and the decision-maker

must understand how policies vary with p to make informed choices about which p (and

thus which policy) to adopt. Small changes in p can sometimes lead to dramatically differ-

ent policies, and selecting a policy optimized for an arbitrary p can lead to poor outcomes

under a different p value. Despite these challenges, much of the existing work assumes a

fixed social welfare function – and hence a fixed value of p – is given [131].

To address this challenge, we apply our portfolio framework that covers the entire spec-

trum of fairness criteria represented by p ≤ 1. Our main algorithm, p-MeanPortfolio,

sequentially selects finite p values starting from −∞ to 1. These values are chosen so that

the optimal policies at these points sufficiently cover the entire range of p ≤ 1 for a given

approximation factor α. We also propose a computationally efficient heuristic algorithm,

which adaptively selects the next p value from the intervals formed by previously chosen p

values.

6.1.1 Contributions

In this chapter, we explore the concept of α-approximate portfolios for preference aggre-

gation in MORL. We summarize our contributions as follows:

1. We propose Algorithm p-MeanPortfolio (Algorithm 7) to compute a finite portfolio

of policies that is α-approximate for the p-means objectives for any feasible set D and

positive base objectives h1, . . . , hd : D → R>0 value of p ≤ 1. As with previous results

in this thesis, we provide theoretical guarantees on the portfolio size. Additionally, we
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also provide guarantees on the number of oracle calls our algorithm makes, i.e., the

number of times we need to find the optimal x ∈ D for a fixed p-mean. This bound is

crucial in the MORL setting, where each oracle call amounts to solving an MDP and

can be expensive.

2. We also introduce a lightweight heuristic BudgetConstrainedPortfolio (Al-

gorithm 9) that reduces number of oracle calls compared to p-MeanPortfolio while

maintaining high-quality portfolio generation.

3. We evaluate our approach on three different domains in MORL, spanning synthetic to

real-world problems. Our results show that a small portfolio can achieve near-optimal

performance across all p ≤ 1. Moreover, the heuristic BudgetConstrainedPort

-folio constructs portfolios that closely match those produced by p-MeanPort

-Folio, while significantly reducing the computational cost.

The literature in RL with multiple stakeholders has primarily focused on optimizing poli-

cies for a given choice of composite objective. Our portfolio approach captures the trade-

offs within the actionable policy space, rather than relying on modeling choices on how

these objectives should be formulated.

6.1.2 Example

An illustrative example we consider in this work is a public health application, where the

staff of a healthcare organization aims to train an intervention policy for multiple benefi-

ciaries under a limited budget [40]. This setting can be captured by Restless multi-armed

bandits (RMABs) [132], which model sequential resource allocation problems under bud-

get constraints. In this context, each beneficiary is associated with a state variable repre-

senting their level of engagement with the healthcare program, and the overall state of the

problem is the concatenation of the states of all beneficiaries. At each time step, a policy

determines which beneficiary to intervene on, subject to the budget constraint. Depending
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on the reward function used to train a policy, different socio-demographic groups among

the beneficiaries can be prioritized. For example, one reward function might encode the

preference to prioritize older populations, while another reward function might encode the

preference to prioritize low-income populations. The decision-maker (e.g., healthcare orga-

nization staff) must train a policy that balances these conflicting objectives. See Figure 1.2

for a demonstration of a portfolio generated using the proposed method. The portfolio con-

sists of three policies, each affecting stakeholders differently based on age and education

levels. This perspective helps staff understand the trade-offs between operational choices.

For details on the experiment, refer to Section 6.4.

6.2 Preliminaries

In this section, we provide preliminaries on p-mean functions and MORL.

6.2.1 Setting

We are given a feasible set or domain D with positive base objective functions h1, . . . , hd :

D → R>0. Throughout this chapter, the base functions can be randomized, so that each

hi(x) is a random variable that depends on i ∈ [d] and x ∈ D. This additional flexibility

will allow us to deal with the MORL setting described in the following subsection. Given

an approximation factor α ∈ (0, 1), we seek an α-approximate portfolioX ⊆ D for p-mean

objectives, i.e., for each p ≤ 1, the set X must contain some x such that E[Mp(h(x))] ≥

αmaxx′∈D E[Mp(h(x
′))].

h(x) = (h1(x), . . . , hd(x)) denotes the d-dimensional (random) vector of base function

values, and Mp(z) =
(

1
d

∑
i∈[d] z

p
i

)1/p
is the p-mean function (see Definition 2.3) for each

z ∈ Rd
>0. Recall that M1(z) = 1

d
∥z∥1 is the arithmetic mean, M−∞(z) = mini zi is the

minimum, and M0(z) =
(∏

i∈[d] zi

)1/d
is the geometric mean.

We only assume oracle access to D and base functions h1, . . . , hd for the p-mean

functions, i.e., for each p ∈ [−∞, 1], we assume an oracle allows us to query x =
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argmaxx′∈DE[Mp(h(x))]. Next, we define the condition number of the base functions

in terms of their bounds:

Assumption 6.1 (Bounded Function Values). There exist strictly positive scalars U,L such

that L ≤ hi(x) ≤ U for all i ∈ [d] and x ∈ D with probability 1. We call κ := U/L the

condition number of the base functions.

We will use the following monotonicity property on p-mean functions:

Lemma 6.1 (Theorem 1, Chapter 3.3.1 [133]). For all strictly positive vectors z ∈ Rd
>0,

and for all p, q ≤ 1 with p < q, we have Mp(z) ≤Mq(z).

6.2.2 Multi-Objective Reinforcement Learning

We consider a multi-objective Markov Decision Process (MDP), defined by the tupleM =

(S,A, P,R = (Ri)i∈[d]), where S denotes a finite state space, A denotes a finite action

space, and P : S × A → ∆S is the transition probability. Additionally, we assume

that we start in a fixed initial state s1 ∈ S and H is the time horizon. In the specific

MORL context we consider, there are d distinct stakeholders, each associated with a reward

function Ri : S ×A → R>0 for i ∈ [d]. A policy π : S × [H]→∆A defines a distribution

over actions at a given time h ∈ [H]. We use τ = (s1, a1, . . . , sH) to denote a trajectory,

which is the sequence of states and actions from time 1 to H . Throughout, we assume that

all reward functions are bounded:

Assumption 6.2 (Bounded Reward). There exist strictly positive scalars U,L such that

L ≤ Ri(·) ≤ U for all i ∈ [d]. We call κ := U/L the condition number of rewards.

The d stakeholders could represent different entities depending on the application; for

example, different constituent demographics of a democracy, stakeholders in a company,

or simply just abstract differences in values or preferences.
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6.2.3 p-Means as Aggregation Functions

The generalized p-means provides a method to aggregate heterogeneous preferences by as-

signing a scalar value to any policy π. We focus on two aggregation rules, denoted by ℓ ∈

{1, 2}, that have been previously proposed in the literature. Each combination of an aggre-

gation rule ℓ ∈ {1, 2} and a parameter p defines a specific aggregation function, denoted as

v(ℓ)(·, p). Given a trajectory τ = (s1, a1, . . . , sH , aH), let Gi(τ) =
1
H

∑H
h=1Ri(sh, ah), i ∈

[d], represent the average reward over the trajectory, and G(τ) ∈ Rd the vector with Gi(τ)

as its ith entry. The aggregation functions are defined as follows:

v(1)(π, p) = Eτ∼π

[
Mp

(
G(τ)

)]
, (6.1)

v(2)(π, p) =Mp

(
Eτ∼π[G(τ)]

)
. (6.2)

In the MORL literature, v(1)(·, p) is referred to as expected scalarized returns (ESR), while

v(2)(·, p) is known as scalarized expected returns (SER). In general, ESR is preferred when

the expected total reward from a single execution is the primary focus, whereas SER is more

suitable when policies are executed multiple times and rewards accumulate over iterations.

Computing the optimal policy for v(ℓ)(·, p) requires specialized algorithms different from

standard RL methods, which are not directly applicable. For example, [41] and [134]

developed algorithms for v(1)(·, p) and v(2)(·, p), respectively. More detailed comparisons

between these scalarization techniques and their solution algorithms are available in [134],

[135], [136], [134], and [41].

While these aggregation rules are often studied independently in MORL, our work

provides a unified framework applicable to both methods. Both v(1), v(2) are special cases of

our general setting, with the feasible set D = Π. For v(1), the base function hi(π) = Gi(τ),

where the trajectory τ is sampled from policy π ∈ Π. That is, the ith base function for

a policy π quantifies the average reward for stakeholder i ∈ [d] on the random trajectory
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τ ∼ π. Then E[Mp(h(π))] = v(1)(π, p). Further, if L ≤ Ri(·) ≤ U for all i, then

L ≤ Gi(τ) ≤ R for all i, τ , and therefore, if the rewards have condition number U
L
≤

κ, then the base functions also have condition number ≤ κ. For v(2), the base function

hi(π) = Eτ∼π[Gi(τ)], i.e., the expected reward on trajectories sampled from policy π.

Note that the base functions are deterministic in this case. As before, if the rewards have

condition number U
L
≤ κ, then the base functions also have condition number ≤ κ.

Oracle Access. For a fixed p, aggregation function v(ℓ)(·, p), ℓ ∈ {1, 2}, and a given set

of policies Π, the associated welfare maximizing policy can be obtained by solving the

following problem:

argmaxπ∈Πv
(ℓ)(π, p). (6.3)

If Π is defined as the set of all possible policies in the MDP, as in the standard RL setting,

each oracle call can be computationally expensive. Moreover, achieving exact optimal-

ity for (Equation 6.3) may not always be feasible due to limitations in RL algorithms.

This means that when measuring the approximation factor of a policy π with respect to

an aggregation function v(ℓ)(·, p), the maximum value v(ℓ)∗ (p) might not be attainable or

computable. In this case, we approximate v(ℓ)∗ (p) as the value achieved by applying the

given RL algorithm. This approach measures the approximation factor relative to what is

achievable using the algorithm at hand.

In practice, Π may be a small set of pre-trained policies, particularly in scenarios where

training new policies is infeasible. In such cases, (Equation 6.3) can be solved efficiently

by enumerating over the policies π ∈ Π and using Monte Carlo simulations to estimate the

value v(ℓ)(π, p).

The notion of oracle access maxx∈DMp(h(x)) for base functions reduces to Equa-

tion 6.3 in the case of MORL.
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6.2.4 Portfolios for Aggregation Rules

We state the formal definition of portfolios for these aggregation functions. This is con-

sistent with Definition 1.2. For brevity, we denote the maximum value function v
(ℓ)
∗ :

[−∞, 1] → R defined as v(ℓ)∗ (p) := max
π∈Π

v(ℓ)(π, p). When ℓ and Π are clear from context,

we denote the optimal policy for v(ℓ)(·, p) as πp.

Definition 6.1 (MORL Portfolio). Given an MORL setting with aggregation rule ℓ ∈ {1, 2}

and approximation factor α ∈ (0, 1), a set of policies Π′ ⊆ Π is called an α-approximate

portfolio for aggregation functions v(ℓ) if for each p ≤ 1, there exists a policy π′ ∈ Π′ that

is an α-approximation to v(ℓ)(·, p), that is,

v(ℓ)(π′, p) ≥ αmax
π∈Π

v(ℓ)(π, p).

6.3 Portfolio Algorithms

In this section, we present our main algorithmic and theoretical results.

6.3.1 Algorithm p-MeanPortfolio

Algorithm 7 p-MeanPortfolio
input: (i) domain D, (ii) base objectives h1, . . . , hd : D → R>0 (iii) an oracle that
given a p ∈ [−∞, 1], returns the optimum p-mean vector argmaxx∈DE[Mp(h(x))],
and (iv) desired approximation factor α ∈ (0, 1)
output: α-approximate portfolio X ⊆ D

1: initialize p0 = − ln d
ln(1/α)

and t = 0
2: while pt < 1 do
3: add x(t) := argmaxx∈DE[Mp(h(x))] to X
4: pt+1 = LineSearch(pt, α)
5: t← t+ 1

6: return X = {x(0), . . . , x(t−1)}

We introduce p-MeanPortfolio (Algorithm 7), which constructs an α-approximate

portfolioX ⊆ D for all p ≤ 1. In Theorem 6.1, we establish formal bounds on the portfolio
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Algorithm 8 LineSearch
input: (i) some p ∈ (−∞, 1), and (ii) desired approximation factor α ∈ (0, 1)
output: b > p such that xp := argmaxx∈DE[Mp(h(x))] is an α-approximation for
E[Mq(h(·))] for all q ∈ [p, b]

1: a← p and b← 1
2: initialize x = argmaxx′∈DE[Mp(h(x

′))]
3: while E[Ma(h(x))] < α maxx′∈D E[Mb(h(x

′))] do
4: q ← a+b

2

5: if E[Ma(h(x))] ≥
√
α maxx′∈D E[Mq(h(x

′))] then
6: a← q
7: else
8: b← q

9: return b

size |X| and the number of oracle calls to Equation 6.3. The full proof is provided in

Appendix C.

Theorem 6.1. Given feasible set D, (possibly random) base objectives h1, . . . , hd : D →

R>0 with condition number κ, and desired approximation factor α ∈ (0, 1), Algorithm 7

(p-MeanPortfolio) returns an α-approximate portfolio of policies X for the class C of

all p-mean functions for p ≤ 1. Further,

1. The portfolio size

|X| = O

(
lnκ

ln(1/α)

)
,

2. The number of oracle calls by the algorithm is upper-bounded by

Õ

(
(lnκ)2 ln ln d

ln(1/α)

)
,

where Õ hides all lower order terms.

As an immediate corollary, we have:

Corollary 6.1. Given an MDPM with d reward functions with condition number κ, set Π

of feasible policies, an aggregation rule ℓ ∈ {1, 2}, and a desired approximation factor α ∈
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(0, 1), Algorithm 7 (p-MeanPortfolio) returns an α-approximate portfolio of policies

Π′ for the set of aggregation functions {v(ℓ)(·, p) : p ≤ 1}. Further,

1. The portfolio size

|Π′| = O

(
lnκ

ln(1/α)

)
,

2. The number of oracle calls by the algorithm is upper-bounded by

Õ

(
(lnκ)2 ln ln d

ln(1/α)

)
,

where Õ hides all lower order terms.

We note that the logarithmic dependence of the portfolio size on κ is necessary; in

particular, there exist instance families with condition number κ where O(1)-approximate

portfolios must have size Ω(lnκ). Note the contrast with minimization portfolios for Lp

norms (Chapter 3), where the portfolio size is independent of κ.

Here, we explain the high-level ideas behind the algorithm. The algorithm iteratively

chooses an increasing sequence of p values p0 < p1 < . . . < pK = 1 using a line search

subroutine (Algorithm 8). It ensures that x(t) is α-approximate for all p ∈ [pt, pt+1] for all

t ∈ [K − 1], and that x(0) is also α-approximate for all p ∈ [−∞, p0].

Line search. The line search subroutine works as follows: given a p ≤ 1, it seeks to

find some b∗ ≥ p such that xp is an α-approximation for all q ∈ [p, b∗]. To achieve this,

it maintains lower and upper bounds a, b on b∗ with p ≤ a < b ≤ 1 and iteratively refines

these bounds.

At each iteration, the algorithm checks whether E[Ma(xp)] ≥ αmaxx∈D E[Mb(x)] (line

3). If this condition holds, then by the monotonicity property of p-means (Lemma 6.1), we

must have:

E[Mb(h(xp))] ≥ E[Ma(h(xp))] ≥ αmax
x∈D

E[Mb(h(x))].

Then, this holds for any q ∈ [a, b], implying that πp is α-approximate across this interval.
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Therefore, this procedure can safely output b∗ = b. This establishes the correctness of the

algorithm, as the line search successfully identifies the next p value if it terminates.

Bounds a, b are updated in each iteration as follows (lines 4-8): we query the value

argmaxx∈DE[Mq(x)] for q = a+b
2

. As before, if E[Ma(h(xp))] exceeds α times the max-

imum maxx∈D E[Mq(h(x))], then we know that xp must be an α-approximation for any

value in [a, q], and the lower bound a can be tightened as a ← q. Otherwise, the upper

bound can be tightened as b← q.

However, as we show in the formal proof in Appendix C, we can in fact ensure faster

convergence by slightly modifying this step. Instead of checking whether E[Ma(h(xp))] ≥

α × maxx∈D E[Mq(h(x))], we check the stronger condition E[Ma(h(xp))] ≥
√
α ×

maxx∈D E[Mq(h(x))]. Since
√
α ≥ α, this stricter condition does not affect correctness

but accelerates convergence.

Oracle complexity. We briefly sketch how we bound the oracle complexity (i.e., num-

ber of oracle calls (Equation 6.3)) by bounding the number of oracle calls in each run of

LineSearch. As discussed, in each iteration of the line search algorithm, the distance

b − a is cut by half since either b or a are updated to a+b
2

. As we show in Lemma C.7,

this implies that after j iterations of LineSearch, the ratio maxx∈D E[Mb(h(x))]
maxx∈D E[Ma(h(x))]

is upper

bounded by ψ(κ, d, α)× 2−j , where ψ is some function of condition number κ, dimension

d, and approximation factor α. By deriving a lower bound on this ratio, we derive an upper

bound on the total number of iterations j.

6.3.2 Heuristic under a Budget Constraint

In p-MeanPortfolio, we provide guarantees on the approximation factor α. However,

achieving these guarantees may require a large number of oracle calls to solve Equation 6.3

across different values of p, which can be impractical when computational resources are

severely limited.

One way to reduce oracle calls is to select a smaller α. However, while Corollary 6.1
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provides an upper bound on the number of calls required, the exact number is difficult to

determine in advance, making it challenging to balance computational cost with portfolio

quality. Alternatively, a budget on the total number of oracle calls can be imposed along

α, but this introduces its own trade-offs: if α is too large, the algorithm may exhaust calls

prematurely, leaving parts of the p range unexplored; if α is too small, it may progress to

p = 1 too quickly, missing opportunities to refine the portfolio.

To address this limitation, we propose the heuristic BudgetConstrainedPort

-folio (Algorithm 9), designed for scenarios with a strict budget K on oracle calls. Un-

like p-MeanPortfolio, which selects p values in a monotonically increasing order from

−∞ to 1, this algorithm dynamically refines the search space based on observed approxi-

mation performance. It greedily targets regions where the approximation factor is likely to

be weakest, ensuring efficient use of the limited oracle budget.

First, we describe the ideal version of this greedy approach. After t oracle calls, let Xt

denote our current portfolio. The objective at each step is to identify the worst-case p value

where the approximation quality of Xt is the lowest by solving the following problem:

Q(Xt) = minp≤1
maxx∈Xt E[Mp(h(x))]

maxx∈D E[Mp(h(x))]
. (6.4)

However, solving this optimization problem exactly is computationally expensive (or po-

tentially even infeasible), particularly since evaluating the objective for any new p would

require an additional oracle call. Instead, BudgetConstrainedPortfolio approx-

imates this worst-case p using only the information gathered from previous iterations, in-

spired by the theoretical principles of p-MeanPortfolio.

After iteration t, the previously selected p values partition the interval [∞, 1] into at

most t+ 1 disjoint intervals:

−∞ < pm(1) < pm(2) < · · · < pm(t) ≤ 1.
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Rather than solving Equation 6.4 exactly to pinpoint the worst-case p, we instead aim to

identify the interval where the approximation quality is the weakest.

First, we rewrite Equation 6.4 by decomposing the minimization over the intervals:

Q(Xt) ≈ min
l∈[t−1]

[
min

p∈[pm(l),pm(l+1)]

maxx∈Xt E[Mp(h(x))]

maxx∈D E[Mp(h(x))]

]
.

The only approximation introduced in this decomposition arises from neglecting the in-

tervals [−∞, pm(1)] and [pm(t), 1]. To cover the first interval, we can initialize the algo-

rithm with a sufficiently small p1, guaranteeing that the approximation factor remains well-

controlled in this region (Corollary 6.1). The second interval is covered by explicitly setting

p2 = 1.

For each interval [pm(l), pm(l+1)], we compute its interval approximation factor, denoted

as u(l), using the following sequence of approximations:

min
p∈[pm(l),pm(l+1)]

maxx∈Xt E[Mp(h(x))]

maxx∈D E[Mp(h(x))]

≈ min
p∈[pm(l),pm(l+1)]

E[Mp(h(xp(m(l))))]

maxx∈D E[Mp(h(x))]

≈
E[Mpm(l+1)

(h(xp(m(l))))]

maxx∈D E[Mp(m(l+1))(h(x))]
:= u(l).

The first approximation follows from the assumption that each interval is well-covered by

the policy trained at its left endpoint, similar to the approach used in p-MeanPortfolio.

The second approximation is justified under the assumption that E[Mp(h(xp(m(l))))]

maxx∈D E[Mp(h(x))]
is a

monotonically decreasing function of p in the interval [pm(l), pm(l+1)]. Note that this as-

sumption holds exactly when the interval is sufficiently small, as this function is continuous

in p (Lemma C.7) and attains its maximum value (= 1) at p = pm(l).

To select the next p value, we identify the interval with the worst (smallest) approxima-
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Algorithm 9 BudgetConstrainedPortfolio
input: (i) domain D, (ii) base objectives h1, . . . , hd : D → R>0 (iii) an oracle that
given a p ∈ [−∞, 1], returns the optimum p-mean vector argmaxx∈DE[Mp(h(x))],
and (iv) desired approximation factor α ∈ (0, 1) (v) initial p0
output: a portfolio X

1: initialize X ← ∅
2: for t = 1 to K do
3: if t = 1 then
4: pt ← p0
5: else if t = 2 then
6: pt ← 1
7: else
8: compute u(l) for [pm(l), pm(l+1)],∀l ∈ [t− 2]

9: pt ←
pm(l∗)+pm(l∗+1)

2
, l∗ = argminl∈[t−2] u(l)

10: Add policy xpt := argmaxx∈DE[Mpt(h(x)] to X
11: return X

tion factor and choose its midpoint:

pt+1 =
pm(l∗) + pm(l∗+1)

2
, l∗ = argminl∈[t−1]u(l).

6.4 Numerical Experiments

In this section, we present the results of our numerical experiments. Additional details of

the experimental setups and the environments are provided in Section D.3.1

6.4.1 Experimental Setups

For a given α and MDP environment, we first compute a portfolio using p-MeanPort

-folio and compare it against two baseline approaches. Suppose p-MeanPortfolio

generates a portfolio of size K. The first baseline selects K values of p uniformly at

random from [p0, 1] and computes their optimal policies, where p0 matches that of p-

MeanPortfolio. The second baseline randomly samplesK policies from Π. Since both

1The code for our experiments can be found at https://github.com/jaimoondra/
approximation-portfolios-for-rl/.
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baselines involve randomness, we generate 10 independent baseline portfolios for each set-

ting and report the average performance across these runs. Finally, we run BudgetConstr

-ainedPortFolio with budget K.

To evaluate each portfolio Π′ = X , we compute its approximation factor Q(Π′) as

defined in Equation 6.4. Since computing this value exactly is infeasible, we approximate

it using a grid search over p, referring to it as the actual approximation. We also compare the

number of oracle calls made by p-MeanPortfolio and BudgetConstrainedPort

-folio. This procedure is repeated for varying α values.

6.4.2 Environments

We conduct experiments across three domains, ranging from synthetic to real-world set-

tings, as described below.

Taxi Environment. We consider a synthetic setting based on the works of [137, 41].

The taxi environment consists of a grid world where a taxi driver serves passengers across

d = 4 different source-destination pairs. When the agent drops off a passenger at their

destination, it earns a reward corresponding to that route. However, since the taxi can

only carry one passenger at a time, it must decide which route to prioritize. A fair agent

should serve all source-destination pairs equitably, avoiding the neglect of more challeng-

ing routes. We train a p-mean maximizing policy using Welfare Q-Learning [41]. Finally,

we experiment on v(1) and define Π as the set of all possible policies in the MDP.

Resource Allocation after Natural Disaster. In this synthetic setting, we have a set of

d = 12 clusters of neighborhoods impacted by a natural disaster. Each cluster is character-

ized by average household income (high, middle, low), proximity to critical infrastructure

(near, far), and population density (high, low), along with distinct post-disaster resource

needs. Over a time horizon, a decision-maker must decide how to allocate a limited num-

ber of resources to these 12 clusters. The reward function for each cluster is the average of

the fraction of unmet need and the fraction of total aid allocated to that cluster. We conduct
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experiments using v(2), with Π defined as a finite set of pre-trained policies.

Healthcare Intervention.2 We consider a real-world healthcare intervention problem,

modeled as an RMAB problem described in Subsection 6.1.2 [21]. ARMMAN [22], an

NGO based in India, runs large-scale maternal and child mobile health programs. One of

their initiatives delivers critical health information via weekly automated voice messages.

To enhance engagement, a limited number of beneficiaries receive direct calls from health

workers each week, with call assignments determined by a policy. The problem involves

d = 59 reward functions, each prioritizing different socio-demographic groups among the

beneficiaries. We conduct experiments using v(2), where Π consists of a finite set of pre-

trained policies. All experiments are strictly secondary analyses and adhere to ethics board

approvals; for further discussion, refer to our impact statement.

6.4.3 Results

Table 6.1 presents comparisons of the approximation quality of p-MeanPortfolio with

random p sampling and random policy sampling baselines, while Table 6.2 reports the num-

ber of oracle calls made by p-MeanPortfolio and BudgetConstrained

-Portfolio. Note that by design, the number of calls for BudgetConstrainedPort

-folio is always the same as the portfolio size.

Size. The portfolios computed using Algorithm p-MeanPortfolio remain small

while achieving a very high approximation factor. Across all three environments, the port-

folio size never exceeds 10, yet still attains an approximation factor close to 1. This sug-

gests that a small portfolio is sufficient to effectively cover the entire spectrum of p values.

Approximation Quality. The proposed algorithms achieve significantly better approx-

imation quality than both benchmark methods. In particular, p-MeanPortfolio gen-

erally attains the highest approximation quality, followed closely by algorithm Budget

-ConstrainedPortfolio in most cases.
2The ARMMAN data used to train the reward models was handled and processed at Harvard. Only the

model-generated reward functions and corresponding reward vectors were used in this thesis.
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However, BudgetConstrainedPortfolio and random p sampling occasionally

outperform p-MeanPortfolio. This is because p-MeanPortfolio selects policies

solely to meet the input approximation factor α, but has no incentive or mechanism to

surpass this approximation quality.

In contrast, BudgetConstrainedPortfolio fully utilizes the input budget K,

and strategically selects boundary points first (a small initial p followed by p = 1). When

K is very small (1 or 2), this initial heuristic strategy can provide more effective coverage

across p ≤ 1, explaining its occasional superior performance. Likewise, in rare cases where

K = 1, a randomly chosen p may happen to yield better coverage than the single policy

selected by p-MeanPortfolio.

Computational Efficiency. As noted earlier, p-MeanPortfolio requires a large

number of oracle calls to produce a high-quality portfolio. In contrast, BudgetConstr

-ainedPortfolio achieves comparable quality while using significantly fewer ora-

cle calls. This suggests that when computational resources are limited, BudgetConstr

-ainedPortfolio serves as a strong alternative with good empirical performance.

Diversity. As we have shown in Figure 1.2 in Subsection 6.1.2, portfolios can simplify

policy deployment decisions by presenting a small yet diverse set of policies. We also

provide the entire p values chosen by p-MeanPortfolio in Section D.2, Table D.2. We

observe that the p values are quite diverse, which corroborates the algorithm’s objective to

cover the entire p range only with these selected values. Figure D.1 and Figure D.2 further

illustrate how the outcomes of the optimal policies for different p values in the portfolio

lead to varying impacts for the stakeholders. Importantly, these are not arbitrary policies

but optimal policies for specific p values, with approximation guarantees extending to other

p values as well.
3Here, we observe a drop in the actual approximation factor of p-MeanPortfolio when the portfo-

lio size is 8. Although this portfolio is computed using α = 0.9, its achieved approximation is slightly
lower. This discrepancy is likely due to the inherent randomness in the RL algorithm and the challenges of
computing exact optimal policies in RL settings, as discussed in Section 6.3.
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Table 6.1: A comparison of actual approximation ratios across various portfolio
sizes for p-MeanPortfolio, random policy sampling, and random p sampling. p-
MeanPortfolio consistently outperforms the other two methods across all portfolio
sizes and experiments.

Portfolio
Size

p-Mean-
Portfolio

Random
Policy

Sampling

Random
p

Sampling
Resource Allocation after Natural Disaster
1 0.706 0.534 0.832
2 0.904 0.568 0.890
3 0.999 0.591 0.892
4 1.000 0.609 0.888

Healthcare Intervention
1 0.924 0.479 0.913
2 0.982 0.545 0.941
3 0.982 0.589 0.929
4 0.982 0.625 0.947
5 0.993 0.635 0.957
6 0.999 0.647 0.962
7 1.000 0.667 0.953

Taxi Environment
1 0.66 0.24 0.66
2 0.61 0.31 0.61
3 0.97 0.54 0.65
8 0.87 0.71 0.67

10 0.99 0.60 0.65

6.5 Conclusion

In this paper, we studied the concept of an α-approximate portfolio in MORL for gener-

alized p-means. We proposed an algorithm to compute α-approximate portfolios and es-

tablished theoretical guarantees on the trade-offs among α, portfolio size, and the number

of oracle calls. Additionally, we developed an efficient heuristic algorithm. Our numerical

experiments demonstrated that the proposed methods successfully compute compact port-

folios that effectively capture the entire spectrum of p values, empowering decision-makers

to make informed decisions.
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Table 6.2: A comparison of the number of oracle calls and actual approximation ratios for
p-MeanPortfolio and BudgetConstrainedPortfolio across different portfolio
sizes. While p-MeanPortfolio often achieves slightly better approximation, it requires
significantly more oracle calls.3

Portfolio
Size

p-MeanPortfolio
BudgetConstrained-

Portfolio
Oracle
Calls

Actual
Approximation

Oracle
Calls

Actual
Approximation

Resource Allocation after Natural Disaster
1 1 0.706 1 0.885
2 7 0.904 2 0.921
3 18 0.999 3 0.921
4 50 1.000 4 0.921

Healthcare Intervention
1 2 0.924 1 0.938
2 7 0.982 2 0.938
3 11 0.982 3 0.938
4 19 0.982 4 0.938
5 23 0.993 5 0.986
6 46 0.999 6 0.986
7 61 1.000 7 0.993

Taxi Environment
1 17 0.66 1 0.66
2 30 0.61 2 0.61
3 44 0.97 3 0.92
8 118 0.87 8 0.90

10 144 0.99 10 0.92
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CHAPTER 7

PORTFOLIO OF ALGORITHMS: ONLINE MIRROR DESCENT WITH

MULTIPLE MIRROR MAPS

7.1 Introduction

In this chapter, we study portfolios of algorithms for online learning. Specifically, we

consider the OCO [138, 139, 140] setup: given a convex body K ∈ Rd, at each time

t ∈ [T ], a player must play a point x(t) ∈ K. An adversary reveals the convex loss function

f (t) : K → R once x(t) is played, incurring loss f (t)(x(t)) for the player. The goal of the

player is to minimize regret, which benchmarks the performance of the online algorithm

with a clairvoyant oracle that is constrained to make a fixed decision across all time steps.

That is, define the total loss of the player as
∑

t∈[T ] f
(t)(x(t)); then the regret of the player

is defined as the difference

regret(T ) =
∑
t∈[T ]

f (t)(x(t))−min
x∈K

∑
t∈[T ]

f (t)(x). (7.1)

Surprisingly, under mild conditions on losses f (t), it is possible to incur o(T ) regret

even in this very general setting. In Online Projected Gradient Descent (OPGD), the player

plays an arbitrary point x(1) ∈ K at t = 1. When loss f (t)(x(t)) is incurred, the player

moves to y(t+1) = x(t) − η∇f (t)(x(t)), where η is a parameter we fix later. Since y(t+1)

may not be inK, x(t+1) is obtained by projecting y(t+1) onK under Euclidean distance, i.e.,

x(t+1) = argminx∈K
1
2
∥x− y(t+1)∥22.

For a bounded convex body K with Euclidean diameter D = maxx,z∈K ∥x − z∥2, and

for convex loss functions f (1), . . . , f (T ), OPGD incurs regret at most O(DG
√
T ), where

G = maxt maxx∈K ∥∇f (t)(x(t))∥2 is an upper bound on the gradients of loss functions.

This chapter is based on joint work with Swati Gupta and Mohit Singh.
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This bound is asymptotically optimal, unless more structural assumptions are made.

Another standard algorithm is the Online Exponentiated Gradient (OEG), which applies

when the convex body K lies in the probability simplex ∆d := {x ∈ Rd
≥0 :

∑
i∈[d] xi = 1}.

As before, the player plays an arbitrary point x(1) ∈ K at t = 1 in OEG. When loss f (t)(x(t))

is incurred, the player moves to y(t+1) = x(t) exp(−η∇f (t)(x(t))), where η is a parameter

we fix later. Since y(t+1) may not be inK, x(t+1) is obtained by projecting y(t+1) onK under

KL divergence: x(t+1) = argminx∈K
∑

i∈[d] xi ln
xi

y
(t+1)
i

. In particular, when K = ∆d is the

probability simplex, then x(t+1) = y(t+1)

∥y(t+1)∥1
. In this case, OEG typically yields better regret

than OPGD.

As one might expect, for specific convex bodies K and loss functions, it is possible

to achieve better regret bounds by choosing an algorithm more tailored to their geometry.

Online Mirror Descent (OMD) (Algorithm 11) is a natural generalization of OPGD and

OEG, where the projection step can use any mirror map or Bregman divergence (defined

shortly); OPGD corresponds to the case when this mirror map is the squared L2 norm

1
2
∥x∥22, and OEG corresponds to the case when this mirror map is the negative entropy∑
i∈[d] xi lnxi. Given this choice of the mirror map in OMD, it is natural to ask if it can be

adjusted to exploit the structure of the loss functions and the convex body. In this work, we

ask the following questions:

Can we obtain a portfolio of diverse mirror maps for OMD that can tune to the problem

geometry? Can the optimum mirror map among this portfolio be learnt during runtime?

7.1.1 Contributions

Portfolio of block norms. First, we propose mirror maps corresponding to block norms

[141] (see Subsection 7.2.2) of different sizes as our portfolio. A block norm of a vector

is obtained by partitioning the coordinates into various blocks and adding the L2 norms of

each block. Different block norms interact with the geometry of the polytope and the loss

functions differently, making a portfolio of block norms useful when the problem geometry
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is unknown in advance. Specifically, when the convex body K lies in dimension d, for each

size n ∈ {20, 21, . . . , 2log2 d = d}, we consider the block norm obtained by partitioning

the d coordinates into n blocks uniformly at random. The corresponding 1 + log2 d mirror

maps form our portfolio of algorithms.

The case of n = 1 block recovers the OPGD algorithm, and the case of n = d blocks

roughly corresponds to OEG. Thus, this portfolio allows for interpolation between these

two standard algorithms [141].

Regret improvements. Next, we show that there exist OCO settings where using an

intermediate block norm1, i.e., n ̸∈ {1, d} leads to asymptotically improved regret rates

as compared to either of the standard algorithms: OPGD and OEG. Specifically, we show

that

• (Theorem 7.2) When the gradients of loss functions are sparse, we characterize the

regret using block norms in terms of the diameter of the convex body K as a function

of the number n of blocks.

• (Theorem 7.3) There exists a family of sparse loss functions over the probability

simplex ∆d := {x ∈ Rd : x ≥ 0,
∑

i∈[d] xi = 1} in dimension d where using an

appropriate block norm improves the regret by factor O
(√

ln d
ln ln d

)
over either OPGD

or OEG. We verify this through numerical simulations.

• (Theorem 7.4) There exists a family of polytopes in dimension d and sparse loss

functions where using an appropriate block norm improves the regret by a polynomial

in d factor over either n = 1 (OPGD) or n = d blocks.

Automatically choosing a mirror map. Finally, we discuss strategies to learn the opti-

mum mirror map from the portfolio of block norm mirror maps. Even though each mirror

1We use ‘using the nth block norm’ as a proxy for ‘using the mirror map corresponding to the nth Block
norm.’
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map enjoys a convergence (via a decrease in a tailored potential function that combines the

distance from the optimum and the drop in the function value), mixing two mirror maps

arbitrarily does not even lead to sublinear regret. In particular, we construct examples of

instances and iteration-specific sparse losses where alternating between OPGD and OEG

can lead to Ω(T ) regret (Theorem 7.5).

This motivates other strategies for mixing mirror maps. Next, we extend the previ-

ous work on learning hyperparameters of algorithms [45, 46, 47]. Specifically, we give

a Multiplicative Weights update algorithm (Algorithm 12) that automatically chooses the

appropriate mirror map and step size from among a portfolio of mirror maps. We apply

this specifically to block norm mirror maps, and show that this algorithm achieves regret

within factor O(
√
ln ln d) of the optimal regret of any block norm, under mild technical

assumptions (Theorem 7.7).

7.1.2 Related Work

The study of OCO and its canonical algorithms – Online Projected Gradient Descent

(OPGD) and Online Mirror Descent (OMD) – dates back to [138] and the early develop-

ments in convex online learning (see [139, 140]). For most standard convex sets, these two

mirror maps – Euclidean (h(x) = 1
2
∥x∥22) and entropic (h(x) =

∑
i xi log xi, or an equiva-

lent proxy) – have long been viewed as the two ‘universally optimal’ geometries: Euclidean

for the hypercube and entropic for the probability simplex. Both achieve minimax-optimal

regret of order O(f(d)
√
T ), with dimension dependence f(d) varying by the setting.

It is known that other mirror maps can achieve better asymptotically better regret rates

in certain OCO settings. For example, [43] show that using the appropriate Lp norm mir-

ror map achieves regret O(
√

(lnS)T ) for sparse loss functions over the probability sim-

plex, improving over both the OPGD bound O(
√
ST ) and OEG bound O

√
(ln d)T when

S = ln d. However, to the best of our knowledge, we are the first to show polynomial in

dimension improvement in regret over both OPGD and OEG (or an equivalent proxy). Fur-
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ther, unlike [43], whose improvements hold in disjoint sparse/dense regimes, we construct

a single online sequence where both Euclidean (OPGD) and entropic (OEG) mirror maps

are simultaneously suboptimal. We construct a natural convex body, P = conv(∆d, A1),

and an oblivious linear-loss sequence for which OPGD (Euclidean) and the entropy proxy

(mirror map for dth block norm) both suffer regret scaling as Ω̃(d1/6
√
T ), while OMD with

a block-norm mirror map tailored to the sparsity structure achieves Õ(
√
T ).

Individual block norms were first considered in (offline) Mirror Descent in Ben-Tal and

Nemirovsky’s optimization framework [141] as alternatives to standard algorithms such as

PGD. Block norms have been considered as alternatives to OMD for OCO [142]; however,

no polynomial asymptotic improvements in regrets using block norms have been shown, to

the best of our knowledge.

Other algorithms such as AdaGrad [143] achieve better regret rates in regimes different

from ours, e.g., the upper bound for AdaGrad does not yield regret improvements for the

probability simplex OCO setting described in Subsection 7.3.2 or the other OCO setting in

Subsection 7.3.3.

The problem of finding the optimal mirror map for a given OCO setting has also been

considered: [144] give an instance-dependent construction that obtains the optimal mirror

map as the solution to an optimization problem. Naturally, it requires a priori knowledge

of the loss functions. Further, it is not known if this optimal mirror map can be computed

efficiently. Given these limitations, it is natural to consider a large, diverse set of mirror

maps and choose from among those online, as we propose.

Parameter-free algorithms for online convex optimization, such as AdaHedge [45],

MetaGrad [46], and AdaFTRL [47] use multiplicative-weights updates to aggregate over

learning rates while keeping the underlying mirror map fixed, typically quadratic or en-

tropic. In contrast, our method performs an explicit MW aggregation across multiple dis-

tinct mirror maps, enabling adaptation not only over step sizes but also over geometries.

Other approaches [145] dynamically update the mirror map as more data is revealed.
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7.1.3 Outline

In Section 7.2, we present preliminaries on OCO, OMD, and block norms. Then, in Sec-

tion 7.3, we characterize regret for block norms for loss functions with sparse gradients. We

also give two examples showing that OMD with block norms can achieve asymptotically

better regret than either OPGD or OEG. In Section 7.4, we discuss the problem of com-

bining different mirror maps. We first show that simple strategies such as using two mirror

maps at alternate steps can lead to suboptimal Ω(T ) regret. Then, we give a multiplicative

weight update-based algorithm that automatically chooses the best mirror map from among

a suite or portfolio of mirror maps, without losing a significant amount in regret. We then

apply this framework to the portfolio of block norms. In Section 7.5, we verify our results

through numerical simulations. Finally, we conclude in Section 7.6.

7.1.4 Techniques

Throughout this chapter, we will be concerned with proving upper and lower bounds for

OMD with specific mirror maps. The upper bounds are standard, and depend on computing

the diameter D of the polytope in the Bregman divergence and the dual gradient G of the

loss functions (see Subsection 7.2.1). The regret is upper bounded by O(DG
√
T ).

We now describe the template that all our lower bounds in this work follow. That

is, given a specific mirror map h, we show a lower bound on the regret achieved by the

corresponding OMD algorithm as described next. In each setting, we are given the starting

point x(1) in the convex body and compute the optimal point x∗. Our loss functions are

usually defined such that being ‘far away’ from x∗ at any iteration incurs a large regret.

Therefore, it is sufficient to show that a large number of iterates are ‘far away’ from x∗.

Since x(1) ̸= x∗ in our examples, proving that the iterate x(t) and x(1) are ‘close’ is sufficient

to prove that x(t) and x∗ are ‘far away’. Therefore, to show regret lower bounds, we upper

bound the appropriate distance between x(t) and x(1).
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7.2 Preliminaries

In this section, we give preliminaries on Online Mirror Descent (OMD) [138] and block

norms [141].

7.2.1 Online Mirror Descent

Algorithm 10 MirrorDescentStep(x,K, h,∇f, η)
input: point x in convex bodyK, distance generating function h, loss function gradient
∇f , and step size η

1: θ = ∇h(x) ▷ Map to dual space
2: θ′ = θ − η∇f(x) ▷ Move in direction of negative gradient
3: y = (∇h)−1(θ′) ▷ Map back to primal space
4: return x′ = Π

(h)
K (y) := argminz∈KBh(z, y) ▷ Project on K

Algorithm 11 OnlineMirrorDescent [138]
input: (i) an online convex optimization setup with a closed, bounded convex body K,
a time horizon T , (ii) a convex function h defined2on Rd with an invertible gradient
∇h, and (iii) a starting point x(1) ∈ K
parameters: step sizes η(1), . . . , η(T ) ∈ R>0

1: for t = 1, . . . , T do
2: play x(t) and observe loss f (t)

3: x(t+1) = MirrorDescentStep(x(t),K, h,∇f (t), η(t))

OMD is an algorithm for the Online Convex Optimization (OCO) setup described ear-

lier, paramterized by the mirror map h. Formally, suppose h : Rd → R is a convex function

(referred to as the mirror map hereafter) with invertible gradient that induces the Bregman

divergence

Bh(x∥y) := h(x)− h(y)− ⟨∇h(y), x− y⟩ ∀ x, y ∈ Rd.

2For simplicity, we assume that h is defined on Rd; however, one must be more careful and define it an
appropriate set X ⊇ K that depends on h.
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Suppose further that h is µ-strongly convex with respect to some norm ∥ · ∥ on Rd, i.e.,

Bh(x∥y) ≥
µ

2
∥x− y∥2 ∀ x, y ∈ Rd.

Denote by ∥ · ∥∗ the dual norm to ∥ · ∥. Given starting point x(1) for OMD, denote by

Dh :=
√

maxz∈KBh(z∥x(1)) the diameter of K under Bh. Then, with convex loss func-

tions f (1), . . . , f (T ), the regret of OMD with Bregman divergence Bh, step-sizes ηt = η,

and iterates x(1), . . . , x(T ) satisfies for any x∗ ∈ K:

regret(T ) :=
∑
t∈[T ]

(
f (t)(x(t))− f (t)(x∗)

)
≤ D2

h

η
+
η
∑

t∈[T ]

(
∥f (t)(x(t))∥∗

)2
2µ

If we further have the bound ∥∇f (t)(x(t))∥∗ ≤ G∗, then this implies

regret(T ) ≤ D2
h

η
+
Tη(G∗)2

2µ
.

Choosing η = Dh

G∗

√
2µ
T

gives

regret(T ) ≤
√
2DhG

∗
√
T

√
µ

(7.2)

This also holds in expectation when gradients are stochastic, assuming the bound

E
[(
∥∇f (t)(x(t))∥∗

)2] ≤ (G∗)2.

7.2.2 Block Norms

Here we define block norms that interpolate between the L1 and L2 norms. Then, we define

the corresponding mirror maps that are strongly convex with respect to these block norms,

thus interpolating between the OPGD and OEG setups.

Given integer d > 0 and blocks B = {B1, . . . , Bn} that partition [d], define the corre-
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sponding block norm ∥ · ∥[B] on Rd by

∥x∥[B] :=
n∑

j=1

∥xBj
∥2 (7.3)

as the sum of the L2 norms of individual blocks xBj
∈ RBj , where xBj

is the restriction

of x to the coordinates in Bj . In particular, when n divides d and all blocks have equal

size |Bj| = d
n

. Throughout this work, we assume that this equal-size partition is chosen

uniformly at random among all such partitions at t = 0, and fixed thereafter. We call this

the nth block norm and denote it by ∥x∥[n].

It is easy to check that the dual of a block norm is simply the maximum of the L2 norms

of each block:

∥x∥∗[B] =
n

max
j=1
∥xBj
∥2 (7.4)

We refer to it as the dual block norm, or as the nth dual block norm in the special case of

the nth block norm.

Mirror Descent Framework. Block norms are useful in the OMD framework since there

exist functions that are strongly convex with respect to the nth block norm for each n. In

particular, we have the following result:

Theorem 7.1 ([141]). Given positive integers d, n such that n divides d, define

γn =


1 if n = 1,

1
2

if n = 2,

1
e lnn

if n > 2,

pn =


2 if n ≤ 2,

1 + 1
lnn

if n > 2.

Consider any equal-sized blocks B = {B1, . . . , Bn} that partition the coordinate set [d].

Define the mirror map

hn(x) =
1

γnpn

n∑
j=1

∥xBj
∥pn2 .
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Then hn is 1-strongly convex with respect to the nth block norm corresponding to B over

the unit norm ball {x : ∥x∥[n] ≤ 1} of the nth block norm.

For given dimension d and integer n that divides d, consider a random equal-size par-

tition of coordinates [d] and the corresponding block norm ∥ · ∥[n] and mirror map hn. We

refer to the corresponding OMD algorithm with hn as OMDn, and denote its regret as

regretn. We get the following result as a corollary of the general OMD bound:

Corollary 7.1. Consider an OCO setting with convex bodyK ⊆ Rd, a starting point x(1) ∈

K, and loss functions f (t), t ∈ [T ]. Define diameter Dn :=
√
maxz∈KBhn(z∥x(1)) and

Gn = maxx∈K,t∈[T ]

√
E
[(
∥∇f (t)(x)∥∗[n]

)2]
.

If K ⊆ {x : ∥x∥[n] ≤ 1}, then for appropriate step sizes, the expected regret of OMDn

is at most

E[regretn(T )] = O(DnGn

√
T ).

If maxx∈K ∥x∥[n] > 1 but K is bounded, we can first rescale K to fit in the norm ball

{x : ∥x∥[n] ≤ 1} and then use OMD on the rescaled convex body. The loss functions must

also be appropriately rescaled.

7.3 Block Norms and Improved Regret

In this section, we first present a general recipe for bounding the regret with the nth block

norm when the gradients of the loss functions are sparse. Then, we present two examples

showing that OMD with intermediate block norms (1 < n < d) can achieve asymptotically

better regret than both OPGD (n = 1 blocks) and OEG3.

• First example (probability simplex in d dimensions): First, we show that for linear

loss functions with sparse gradients, using a suitable block norm improves the regret

upper bound in Corollary 7.1 by a factor Ω
(√

ln d
ln ln d

)
over both OPGD and OEG. Next,

3Or n = d blocks, when OEG does not apply.
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we give an example of a concrete OCO setting where this improvement in regret is

realized.

• Second example (convex hull of d+1 points): We show that for linear loss functions

with sparse gradients, using a suitable block norm improves the regret upper bound

in Corollary 7.1 by a factor Ω̃
(
d1/6

)
over both n = 1 (OPGD) and n = d block

norms. Next, we give an example of a concrete OCO setting where this improvement

in regret is realized.

To our knowledge, our second example is the first demonstration of a polynomial-factor

improvement in regret obtained by using mirror maps beyond OPGD or OEG.

7.3.1 Regret for Sparse Gradients

Consider an OCO setting where the gradients ∇f (t)(x) are all 0-1 vectors and S-sparse,

i.e., ∥∇f (t)(x)∥1 ≤ S. We say that such loss functions are S-sparse.

For OMD with nth block norm, we bound the quantity Gn, which is the expectation

of the square of the dual block norm for such gradients. The proof of the lemma, which

uses Bernstein’s inequality for negatively associated random variables, is deferred to Sec-

tion E.1.

Lemma 7.1. Consider a vector c ∈ {0, 1}d that is S-sparse, i.e., ∥c∥1 ≤ S, and a block

norm ∥ · ∥[n] induced by a random equal n-partition of [d]. Then the expected square of the

dual norm E
[(
∥c∥∗[n]

)2]
is bounded above by

E
[(
∥c∥∗[n]

)2] ≤ 6max

{
S

n
, lnn

}
.

Therefore, we get the following result using Corollary 7.1:

Theorem 7.2. Consider an OCO setting with on convex body K ⊆ Rd, a starting point

x(1) ∈ K, and S-sparse loss functions f (t), t ∈ [T ]. Define Dn :=
√
maxz∈KBhn(z∥x(1)).
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Then, if K lies in the unit norm ball {x ∈ Rd : ∥x∥[n] ≤ 1} for the nth block norms, we

have for appropriate step sizes that the expected regret of OMDn is at most

E[regretn(T )] =


O
(√

S
n
Dn

√
T
)

if n ≤ S
lnS

,

O
(√

lnn Dn

√
T
)

if n > S
lnS

.

Proof. From Lemma 7.1, we get that

Gn := max
t∈[T ],x∈K

∥∇f (t)(x)∥∗[n] ≤

√
6max

{
S

n
, lnn

}
.

For n ≤ S
lnS

, we have lnn ≤ lnS and S
n
≥ lnS, therefore, Gn ≤

√
6S
n

. Now suppose

n ≥ S
lnS

. Since lnS ≤
√
S for all S > 0, we have n ≥ S√

S
=
√
S, so that lnn ≥ 1

2
lnS,

and S
n
≤ lnS. Therefore, max

{
S
n
, lnn

}
≤ 2 lnn, implying Gn ≤

√
12 lnn. Corollary 7.1

then immediately implies the result.

7.3.2 Logarithmic Improvement in Regret Over Simplex

In this section, we show that block norms can achieve asymptotic improvements in re-

gret over the probability simplex for sparse loss functions using block norms. To apply

Theorem 7.2, we need an upper bound on the diameter Dn of the probability simplex

∆d := {x ∈ Rd : x ≥ 0,
∑

i∈[d] xi = 1} for the Bregman divergence Bhn correspond-

ing to the nth block norm. The following lemma provides this bound; its proof is deferred

to Section E.2.

Lemma 7.2. Let hn denote the nth block norm over the probability simplex. Then

max
x∈∆d

√
Bhn(x∥x(1)) ≤

√
1

γn
≤ 2
√
1 + lnn,

where γn is as defined in Theorem 7.1.

Given this bound on Dn, we can upper bound the regret for any block norm using
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Theorem 7.2. Specifically, we have that for any S-sparse loss functions over the probability

simplex,

E[regretn(T )] =


O
(√

S
n
(1 + lnn) ·

√
T
)

if n ≤ S
lnS

,

O
(
(lnn)

√
T
)

if n > S
lnS

.

In particular, for S ≃ ln d, we have E[regret1(T )] = O(
√

(ln d)T ), regretd(T ) =

O((ln d)
√
T ), and regretS(T ) = O((ln ln d)

√
T ). Thus, we expect that the Sth block

norm gives a factor
√
ln d

ln ln d
improvement over the best of OPGD and OEG. We formalize

this claim now, also providing lower bounds on the regrets of OPGD and OEG, which are

denoted regreteuc and regretent respectively.

Theorem 7.3. There exists an OCO setting with sparse loss functions where

min {E[regreteuc(T )],E[regretent(T )]} = Ω

(√
ln d

ln ln d

)
E[regretS(T )]

for S = ln d. That is, OMD with the Sth block norm improves the regret by a factor

Ω
(√

ln d
ln ln d

)
over OPGD and OEG.

To prove this theorem, it is sufficient to provide the OCO setting and prove lower

bounds on E[regreteuc(T )] and E[regretent(T )].

OCO Setting. Our convex body is the probability simplex ∆d. Each loss function f (t), t ∈

[T ] is defined as f (t)(x) = −⟨c(t), x⟩ where c(t) is a 0-1 vector with exactly S non-zero co-

ordinates, chosen as follows: c(t)1 = 1 and the other S − 1 non-zero coordinates are chosen

uniformly at random from [2, d]. All algorithms must start at point x(1) = 1
d
1d. The time

horizon T ≥ ln d, and S = ln d. Clearly, x∗ = (1, 0, . . . , 0), with
∑

t∈[T ] f
(t)(x∗) = −T .

First, we note that as discussed above, regretS(T ) = O((ln ln d)
√
T ). Further, we

have that for all x ∈∆d,

E[f (t)(x)] = −
∑
i∈[d]

E[c(t)i ]xi =
∑
i∈[d]

Pr(c
(t)
i = 1)xi
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= −x1 −
S − 1

d− 1

∑
i∈[2,d]

xi = −x1 −
S − 1

d− 1
(1− x1)

≥ −x1 −
S − 1

d− 1
. (7.5)

Lower Bound for OPGD. The Euclidean diameter Deuc = maxz∈∆d
∥z − x(1)∥2 =√

(1− 1/d)2 + (d− 1)(1/d)2 =
√
1− 1/d.

Further, clearly, E[G2
euc] ≥ S. Therefore, the step size η is

η =
Deuc√
E[G2

euc]T
≤
√

1− 1/d√
ST

.

By induction, we get that x(t)1 ≤ x
(1)
1 + (t − 1)η. Define T0 = 1 + (1−1/d)

2η
= 1 +

1
2

√(
1− 1

d

)
ST . Then x(t)1 ≤ 1

d
+ 1

2
for all t ∈ [T0]. By Equation 7.5, for all t ∈ [T0],

E[f (t)(x(t))− f (t)(x∗)] ≥ −
(
1

2
+

1

d

)
− S − 1

d− 1
− (−1)

≥ 1

2
− S

d
≥ 1

4
.

The last inequality holds since S = ln d ≤ d
2

for all large enough d. Therefore,

E[regreteuc(T )] =
∑
t∈[T ]

E[f (t)(x(t))− f (t)(x∗)]

≥
∑
t∈[T0]

E[f (t)(x(t))− f (t)(x∗)]

≥
∑
t∈[T0]

1

4
=
T0
4

= Ω
(√

ST
)
= Ω

(√
(ln d)T

)
.

Lower Bound for OEG. Consider OMD with the entropic mirror map, i.e., h(x) :=

ent(x) :=
∑

i∈[d] xi lnxi. The step size is

η =

√
µmaxx∈∆d

Bent(x∥x(0))
G∗

ent

√
T
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Since x(0) = 1
d
1d, we have

√
maxx∈∆d

Bent(x∥x(0)) =
√
ln d. Since Bh is 1-strongly

convex with respect to the L1 norm and∇f (t)(x) is S-sparse, we have µ = 1 and G∗
ent = 1,

so that η =
√

ln d
T

.

Since∇f (t)(x) = −c(t) for all x, we have that

x
(t+1)
i =


x
(t)
i eη

eη
∑

i∈[S] x
(t)
i +

∑
i∈[S+1,d] x

(t)
i

if c(t)i = 1,

x
(t)
i

eη
∑

i∈[S] x
(t)
i +

∑
i∈[S+1,d] x

(t)
i

if c(t)i = 0.

Therefore, by induction on t, x(t)1 ≤ 1
d
eηt for all t ∈ [T ]. Define T0 =

√
T ln d. By

Equation 7.5, for all t ∈ [T0],

E[f (t)(x(t))− f (t)(x∗)] ≥ 1− 1

d
eηt − S − 1

d− 1
=
d− S
d− 1

− 1

d
eηt.

Also, clearly, E[f (t)(x(t))− f (t)(x∗)] ≥ 0 for all t. Therefore, the expected regret is

E[regretent(T )] =
∑
t∈[T ]

E[f (t)(x(t))− f (t)(x∗)]

≥
∑
t∈[T0]

(
d− S
d− 1

− 1

d
eηt
)

≥
(
d− S
d− 1

)(
T0 −

1− 1/d

eη − 1

)
≥
(
d− S
d− 1

)(
T0 −

1− 1/d

η

)
=

(
d− S
d− 1

)(√
T ln d−

(
1− 1

d

)√
T

ln d

)
.

Since S ≤ d
2
, we have d−S

d−1
≥ 1

2
. Further, 1

2

√
T ln d ≥

(
1− 1

d

)√
T
ln d

if d ≥ 10, so that

E[regretent(T )] ≥ 1
4

√
T ln d.
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7.3.3 Polynomial Improvement in Regret

In this section, we give an OCO setting where the regret improvement through intermediate

block norms is polynomial in the dimension. Specifically, we give a polytope P and loss

functions f (1), . . . , f (T ) such that using a block norm with n ̸= {1, d} blocks improves the

regret by a polynomial in d factor:

Theorem 7.4. There exists an OCO setting on a convex body K ⊆ Rd with S-sparse loss

functions where

min{E[regret1(T )],E[regretd(T )]} = Ω̃(d1/6)E[regretS(T )]

for S = d1/3, where Õ ignores all terms that are logarithmic in d and T .

Fix dimension d ≥ 50. For A ≥ 0, define the polytope P as the convex hull of the

standard unit vectors e1, . . . , ed and A1d. We set A = d−2/3.

OCO Setting. For t ∈ [T ], define loss functions f (t)(x) = −⟨c(t), x⟩, where c(t) ∈ {0, 1}d

is a random vector with exactly S non-zero coordinates, defined as follows: c(t)1 = 1 and

the remaining S − 1 non-zero coordinates of c(t) are chosen uniformly at random from

among the remaining d− 1 coordinates, independently at different t ∈ [T ]. We fix sparsity

S = d1/3. The starting point x(1) = A1d. We set convex body K = P defined above.

As before, our twofold strategy is as follows:

1. For n = S blocks, we show using Corollary 7.1 that the corresponding regret is at

most E[regretS(T )] = Õ(
√
T ).

2. For n ∈ {1, d} blocks, we show that the corresponding regret E[regretS(T )] =

Ω̃(d1/6
√
T ). To prove this, we show that after t iterations, x(t) must still be ‘close’

to x(1), and therefore must be ‘far away’ from x∗, and incur large regret as a conse-

quence. This is similar to our approach in Subsection 7.3.2, except that the notion of
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‘close’ and ‘far away’ will change, and that the proofs will be more involved.

Recall that Corollary 7.1 for block norms requires the polytope P to lie within the

unit norm ball of the corresponding block norm. In this case, for certain block norms,

P may not lie within the corresponding unit norm ball. For example, for n = d blocks,

the corresponding block norm is the L1 norm, and P does not lie in the unit norm ball

{x ∈ Rd : ∥x∥1 ≤ 1} since ∥x(1)∥1 = Ad = d1/3 > 1. For such norms, we must first

rescale P before applying Corollary 7.1.

Upper Bound for Sth Block Norm. We will show that E[regretS(T )] = Õ(
√
T ).

First, we claim that P lies in the unit norm ball {x : ∥x∥[S] ≤ 1}, so that a rescaling is

not needed. To see this, we note that maxx∈P ∥x∥[S] is achieved at a vertex, and there-

fore by symmetry, maxx∈P ∥x∥[S] = max{∥e1∥[S], ∥x(1)∥[S]}. However, ∥e1∥[S] = 1 and

∥x(1)∥[S] = A · S ·
√
d/S = A

√
dS. Since A = d−2/3 and S = d1/3, we have A

√
dS = 1.

Therefore, P lies in the unit norm ball {x : ∥x∥[S] ≤ 1}.

Next, to apply Corollary 7.1, we need to upper bound DS :=
√

maxz∈KBhS
(z∥x(1))

and GS = maxx∈K,t∈[T ]

√
E
[(
∥∇f (t)(x)∥∗[n]

)2]
.

To bound GS , recall the characterization of the dual norms of block norms (Equa-

tion 7.4). For blocks B = (B1, . . . , BS), we have

∥y∥∗[S] = max
j∈[n]
∥yBj
∥2.

In our setting,−∇f (t) is a 0-1 vector with exactly S non-zero coordinates. Since the blocks

are all of equal size and chosen uniformly at random, we can apply Lemma 7.1 to get that

for all x,

E
[(
∥∇f (t)(x)∥∗[S]

)2]
= 6max

{
S

S
, lnS

}
= 6 lnS = O(ln d). (7.6)

Therefore, it remains to show that DS = Õ(1) in order to show that E[regretS(T )] =

166



Õ(
√
T ). We defer the proof of this fact to Section E.3.

Lemma 7.3. For the polytope P defined above and diameterDS =
√
maxz∈KBhS

(z∥x(1)),

we have DS = Õ(1).

Lower Bound on OPGD. To establish lower bounds on regret, we first show that being

a significant distance away from x∗ = e1 incurs significant regret. Recall that f (t)(x) =

−⟨c(t), x⟩ for all t ∈ [T ], where c(t)1 = 1 and exactly S − 1 other coordinates or c(t) are

non-zero, chosen uniformly at random. Therefore, for all x ∈ P and all t ∈ [T ], we have

E[f (t)(x)] = −
∑
i∈[d]

Pr(c
(t)
i = 1)xi = −x1 −

S − 1

d− 1

∑
i∈[2,d]

xi ≥ −x1 −
S

d

∑
i∈[2,d]

xi.

In particular, since
∑

i∈[2,d] xi ≤ ∥x∥1 ≤ ∥A1d∥1 = Ad for all x ∈ P , we get E[f (t)(x)] ≥

−x1 − S
d
(Ad) = −x1 − AS. Since A = d−2/3, S = d1/3, and f (t)(x∗) = −1, we have

E[f (t)(x)− f (t)(x∗)] ≥ −(x1 + d−1/3) + 1 = 1− d−1/3 − x1. (7.7)

Therefore, to lower bound the regret of OPGD, we need to establish upper bounds on the

first coordinates x(t)1 of the iterates {x(t) : t ∈ [T ]} of OPGD.

We first compute the learning rate of OPGD. By symmetry, the diameter

Deuc = max
x∈P
∥x− x(1)∥2 = ∥e1 − A1d∥2

=
√
(1− A)2 + (d− 1)A2 ≤ (1− A) + dA ≤ 2(1− A).

The last inequality holds since A = d−2/3. The gradient bound is Geuc = maxt∈[T ],x∈P

∥∇f (t)(x)∥2 =
√
S = d1/6. Therefore, η = Deuc

Geuc

√
T
≤ 2(1−A)

d1/6
√
T

.

At time step t, denote the set of non-zero coordinates in ∇f (t) = −c(t) as C(t) = {i ∈
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[d] : c
(t)
i = 1}. The unconstrained update rule of OPGD for coordinates i ∈ C(t) is

y
(t)
i = x

(t)
i + η.

Therefore, we get by induction on t that for the sequence x(t) of iterates of OPGD,

x
(t)
1 ≤ A+ (t− 1)η.

Denote T0 = 1 + 1
2η

= 1 + d1/6

4(1−A)

√
T . Then for t ≤ T0, we get x(t)t ≤ A+ 1

2
= d−2/3 + 1

2
.

From Equation 7.7,

regreteuc(T ) =
∑
t∈[T ]

E[f (t)(x(t))− f (t)(x∗)]

=
∑
t∈[T0]

E[f (t)(x(t))− f (t)(x∗)]

+
T∑

t=T0+1

E[f (t)(x(t))− f (t)(x∗)︸ ︷︷ ︸
≥0

]

≥
∑
t∈[T0]

(1− d−1/3 − x(t)1 ) (Equation 7.7)

≥ (1− d−1/3 − (1/2 + d−2/3))T0

≥ T0
8

(assume d ≥ 50) = Ω(d1/6
√
T ).

Lower Bound on dth Block Norm OMD. Next, we prove that the regret of the dth

block norm OMD, regretd(T ) = Ω̃(d1/6
√
T ). First, we note that P does not lie in the

unit norm ball {x ∈ Rd : ∥x∥1 ≤ 1} of the L1 norm, since ∥A1d∥ = Ad = d1/3 > 1.

So we must rescale the polytope so that it fits inside the L1 norm ball before applying

Corollary 7.1. Define the scaled polytope P̂ = 1
Ad
P to be the convex hull of 1

Ad
e1, . . . ,

1
Ad
ed

and 1
d
1d. For convenience, we will denote this rescaling factor R = Ad. The loss functions

must also be scaled by a factor R, and the new losses are denoted f̂ (t) = Rf (t).
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The algorithm will converge to the optimal point z∗ =
(

1
R
, 0, . . . , 0

)
in the scaled poly-

tope P̂ . As before, we will show that it converges in a large number of steps, accumulating

high regret. Specifically, we will show the following bound on the iterates of the algorithm:

Lemma 7.4. The iterates z(1), . . . , z(T ) ∈ P̂ of OMD with dth block norm satisfy with high

probability

z
(t)
1 ≤

1

d
+

√
K

R
√
R
(t− 1),

where K = 128
T

ln2(dT ).

Given this lemma, we prove that the total regret of the algorithm, denoted regretd(T ) =

Ω̃(d1/6
√
T ). Indeed, for the optimal point z∗ =

(
1
R
, 0, . . . , 0

)
, we have that E[f̂ (t)(z∗)] =

R E[f (t)(z∗)] = R(−1 · 1
R
) = −1. Further, for any z ∈ P̂ , analogous to Equation 7.7, we

have for all t ∈ [T ] that

E[f̂ (t)(z)] = −Rz1 −R ·
S − 1

d− 1

∑
i∈[2,d]

zi ≥ −Rz1 −
R(S − 1)

d
≥ −Rz1 −

RS

d
.

Consider Lemma 7.4. Denote T0 = 1+ 1
2

√
R
K

whereK = 128
T

ln2(dT ). Then, z(t)1 ≤ 1
d
+ 1

2R

for all t ≤ T0. We can lower bound the regret between 1 ≤ t ≤ T0 as follows using the

above equation and Lemma 7.4:

∑
t∈[T0]

E
[
f̂ (t)(z(t))− f̂ (t)(z∗)

]
≥
∑
t∈[T0]

(
(−Rz(t)1 −

RS

d
− (−1)

)

≥
∑
t∈[T0]

(
(−R

(
1

2R
+

1

d

)
− RS

d
− (−1)

)

≥ T0

(
1

2
− (S + 1)R

d

)
.

Since R = Ad = d1/3 and S = d1/3, we get that for all d ≥ 50, this is at least T0

4
=
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Ω
(√

R
K

)
= Ω̃

(
d1/6
√
T
)

. This proves the regret bound

regretd(T ) ≥
∑
t∈[T0]

E
[
f̂ (t)(z(t))− f̂ (t)(z∗)

]
= Ω̃

(
d1/6
√
T
)
.

To prove Lemma 7.4, we show that the Bregman divergenceBhd
(z(t)∥z(t+1)) is sandwiched

between
1

2
∥z(t) − z(t+1)∥21 ≤ Bhd

(z(t)∥z(t+1)) ≤ K

2R
. (7.8)

Further, we prove in Section E.3 that thisL1 norm bound implies the coordinate-wise bound

in Lemma 7.4.

The lower bound in Equation 7.8 follows from Theorem 7.1 (since Bhd
is 1-strongly

convex with respect to the L1 norm in the L1 norm ball). The upper bound is more involved

and uses the structure of loss functions and the polytope. We give a high-level sketch of the

proof here, with details deferred to Section E.3.

Specifically, if y(t) denotes the intermediate point between z(t) and z(t+1), then z(t+1)

is the minimizer of Bhd
(z∥y(t)). Therefore, using the generalized Pythagorean theorem for

Bregman divergences,

Bhd
(z(t+1)∥z(t)) ≤ Bhd

(z(t+1)∥y(t)) +Bhd
(z(t)∥y(t)) ≤ 2Bhd

(z(t)∥y(t)).

Therefore, it is sufficient to upper bound Bhd
(z(t)∥y(t)). However, given z(t), we can ex-

plicitly compute y(t) as a function of z(t), dimension d, and the step size η of the algorithm.

7.4 Learning the Optimal Mirror Map

In this section, we discuss learning the optimal mirror map for a given OCO setting from

among a family of mirror maps, e.g., block norm mirror maps.
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7.4.1 Alternating between Mirror Maps is Suboptimal

The most natural way to combine mirror maps is to use different mirror maps at different

time steps t ∈ [T ]. We construct instances where naively alternating between mirror maps

can incur regret Ω(T ), thus demonstrating that more sophisticated strategies are needed to

combine mirror maps. In particular, we give instances where using the OPGD and OEG at

alternate steps leads to Ω(T ) regret. Contrast this with OPGD or OEG, each of which re-

sults inO(
√
T ) regret. Our result holds for all (fixed) step sizes, thus showing that adjusting

the step sizes is not sufficient to produce an optimal-regret algorithm.

Theorem 7.5. An algorithm that alternates between OPGD and OEG with fixed step sizes

has regret Ω(T ) in the worst case, irrespective of the step sizes.

To prove this result, we give a specific OCO setting in 2 dimensions where the alternat-

ing algorithm incurs Ω(T ) regret.

OCO Setting. The convex body is the probability simplex ∆2 = {x ∈ R2 : x1 + x2 =

1, x1, x2 ≥ 0} in 2 dimensions. All algorithms must start at x(1) = (1/2, 1/2). We are

given that the loss functions f (t), t ∈ [T ] all satisfy ∥∇f (t)(x)∥2 ≤ 2 for all x ∈ R2. These

will be chosen adversarially based on the choices made by the algorithm.

Consider an algorithm that runs MirrorDescentStep (Algorithm 10) with the Eu-

clidean mirror map heuc(x) = 1
2
∥x∥22 on odd steps and with the entropic mirror map

hent =
∑

i∈[d] xi lnxi on even steps. Suppose the step sizes for these are ηeuc and ηent

respectively. Using a case analysis on the step sizes, we show that there always exist loss

functions so that this algorithm has regret Ω(T ).
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Case 1: ηeuc ≥ 16
T

. The loss functions are specified as follows:

f (t)(x) =


−x1 if t is odd,

0 if t is even and t ≤ T/8,

−2x2 if t is even and t > T/8.

Since
∑

t∈[T ] f
(t)(x) = −T

2
x1 − 3T

4
x2, the optimal point x∗ = e2 = (0, 1), and the optimal

total loss is −3T
4

.

We will claim that the algorithm hits and stays at vertex e1 = (1, 0) in ≤ T
8

time steps

and then does not move, i.e., x(t) = e1 for all t ≥ T
8

. Assuming this claim, the loss of the

algorithm is at least −1
2
· T

8
in the first T

8
time steps, and exactly −1

2
· 7T

8
thereafter. Thus,

the total loss of the algorithm is −T
2

. Therefore, the regret is −T
2
+ 3T

4
= T

4
= Ω(T ).

To see the claim, first note that x(t+1) = x(t) for all even t ≤ T/8 since f (t)(x) = 0.

Therefore, any movement in x(t) is due to the Euclidean mirror map update step, which

moves x(t) towards e1 since ∇f (t)(x) = (−1, 0) for all odd t. Specifically, for all odd t,

y
(t+1)
1 = x

(t)
1 + ηeuc, x

(t+1)
1 = Πeuc(y

(t+1)) = min
(
x
(t)
1 +

ηeuc
2
, 1
)
.

Thus, as long as x(t)1 < 1, the Euclidean update step moves it towards 1 by a distance of

ηeuc
2

at every odd time step t ≤ T/8. Since ηeuc ≥ 16
T

, and since x(1)1 = 1/2, this implies

that x(T/8)1 = 1
2
+ T

16
× ηeuc

2
= 1.

Once x(t) = (1, 0), the entropic map cannot revive zero mass on x(t)2 , since its update

rule takes

x
(t+1)
2 ∝ x

(t)
2 exp(−ηent∇2f

(t)(x(t))) = 0.
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Case 2: ηeuc < 16
T

. The loss functions are specified as follows:

f (t)(x) =


−x2 if t is odd,

0 if t is even.

Clearly, the optimal point is x∗ = e2 = (0, 1), with optimal total loss −T/2. As in Case 1,

the Euclidean mirror map moves towards the optimal by a distance of ≤ ηeuc
2

at every odd

time step. There is no movement at even time steps. That is, for all t,

x
(t)
2 ≤

1

2
+
ηeuc
2
· t
2
.

Therefore, since ηeuc < 16
T

, we have x(t)2 ≤ 3
4

for all t ≤ T/16. The regret up to T/16 is

therefore ≥
(
1− 3

4

)
· T
32

= T
128

. Since the regret is nonnegative thereafter, the total regret

is at least T
128

.

Finally, we remark that the adversary need not handle the two cases separately in de-

signing the loss functions: it can give the loss functions in Case 1 with probability 1/2

and those in Case 2 with probability 1/2 without any knowledge of the step sizes of the

algorithm. Thus, our construction is completely oblivious to step sizes.

7.4.2 Multiplicative Weight Update over Mirror Maps

Having established that intermediate block norms can yield significant gains, we now ask

whether an algorithm can adaptively learn which mirror map to use – without prior knowl-

edge of the structure of loss functions.

We show that a Multiplicative Weight (MW) update algorithm that maintains each mir-

ror map as an ‘expert’, obtains regret at most the minimum of the best mirror map’s regret,

plus an additional O(ρ
√
lnN
√
T ) term, where ρ ≥ maxx,z∈K,t∈[T ] f

(t)(x) − f (t)(z) is an

upper bound on the loss function differentials. The algorithm requires knowing ρ. The

following theorem formalizes this:

173



Algorithm 12 MirrorWeights

input: convex body K ⊆ Rd, time horizon T , starting point x(1) ∈ K, strongly convex
distance generating functions h1, . . . , hN , upper bound ρ ≥ maxx,z∈K,t∈[T ] f

(t)(x) −
f (t)(z) on the differential in loss function values
parameters: step sizes {η(t)ℓ , ℓ ∈ [N ], t ∈ [T ]}, and learning rate ε > 0

1: initialize X ∈ Rd×N with all columns Xℓ ← x(1)

2: initialize probabilities pℓ ← 1
N

for all ℓ ∈ [N ]
3: for t = 1, . . . , T do
4: play x(t) =

∑N
ℓ=1 pℓXℓ and observe loss f (t)

5: for ℓ = 1, . . . , N do
6: pℓ ← pℓ · exp

(
− εf (t)(Xℓ)

ρ

)
7: Xℓ ← MirrorDescentStep(Xℓ,K, hℓ,∇f (t), η

(t)
ℓ )

8: normalize p← p/∥p∥1

Theorem 7.6 (Combining mirror maps). Consider an OCO setting with f (t)(x)−f (t)(z) ≤

ρ for all t ∈ [T ] and x, z ∈ K. Given N mirror maps h1, . . . , hN and their step sizes, if

T ≥ lnN , then MirrorWeights (Algorithm 12) achieves regret at most

regret(T ) ≤ min
ℓ∈[N ]

regrethℓ
(T ) + 2ρ

√
T lnN

for learning rate ε =
√

lnN
T

.

The proof follows standard MW arguments and is deferred to Section E.4. Next, we

combine this idea with the 1 + log2 d block norm mirror maps corresponding to n ∈

{20, 21, . . . , 2log2 d}. In this setting, even the input on the step sizes is not required: given

the Euclidean diameterDeuc = maxx,z∈K ∥x−z∥2, and the Euclidean gradient norm bound

Geuc = maxx∈K,t∈[T ] ∥∇f (t)(x)∥2, the diameterD and gradientG for any other block norm

is within factor d of Deuc and Geuc respectively. Thus, we can search over the step sizes for

each block norm (up to a factor of 2) by making O(log d) copies of each block norm mirror

map, but with different step sizes4. We have the following result:

Theorem 7.7 (Combining block norms). Consider an OCO setting with convex body K
4This search over step sizes is essentially the MetaGrad algorithm in [46].
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that lies within the L1 norm ball in Rd. Suppose the number of time steps T ≥ 4 ln ln d,

and suppose the differential in loss functions maxx,z∈K,t∈[T ] f
(t)(x) − f (t)(z) = 1. Then,

given the Euclidean diameter Deuc = maxx,z∈K ∥x − z∥2 and Euclidean gradient norm

bound Geuc = maxx∈K,t∈[T ] ∥∇f (t)(x)∥2, MirrorWeights (Algorithm 12) with block

norms achieves regret at most

regret(T ) = O(
√
ln ln d) · min

n∈{20,...,2log2 d}
DnGn

√
T ,

where Dn is the diameter under the corresponding Bregman divergence Bhn and Gn is the

gradient norm upper bound in the dual norm to nth block norm.

Proof. By our construction above and by Theorem 7.6, we have that

regret(T ) = O
(
min
n
DnGn

√
T + ρ

√
(ln ln d)T

)
.

Thus, it is sufficient to show that ρ ≤ DnGn for each n. To show this, suppose ρ =

f (t)(x)− f (t)(z) for some x, z ∈ K and t ∈ [T ]. Then,

ρ = f (t)(x)− f (t)(z) =

∫ 1

0

⟨∇f (t)(z + β(x− z)), x− z⟩ dβ

≤
∫ 1

0

∥∥∇f (t)(z + β(x− z))
∥∥∗
[n]
∥x− z∥[n] dβ

≤ Gn∥x− z∥[n].

Therefore, it is sufficient to show that ∥x − z∥[n] ≤ O(Dn). Recall that D2
n = maxx′∈K

Bhn(x
′∥x(1)) ≥ maxx′∈K

1
2
∥x′ − x(1)∥[n], where the inequality holds since hn is 1-strongly

convex with respect to ∥ · ∥[n] (Theorem 7.1). Therefore,

2
√
2Dn ≥ ∥x− x(1)∥[n] + ∥z − x(1)∥[n] ≥ ∥x− z∥[n].

This completes the proof.
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Note that the restriction that K lies in the L1 norm ball can be removed by rescaling K,

as long as it is bounded.

7.5 Experiment

Figure 7.1: Total regret against the number of blocks in the distance generating function
after T = 250 time steps.

In this section, we describe a numerical experiment over the probability simplex to

show that intermediate block norms can achieve regret better than either OPGD or OEG.

OCO Setting. Our convex body is the probability simplex ∆d = {x ∈ Rd :
∑

i∈[d] xi =

1, x ≥ 0} in d = 212 = 4096 dimensions. The time horizon T = 250, and for each

t ∈ [T ], the loss function f (t)(x) = −⟨c(t), x⟩ where c(t) ∈ {0, 1}d is a S-sparse vector

where S = ⌊ln d⌋, described next.

At each t, we choose a main coordinate i(t) ∈ [d] such that c(t)i(t) = 1 and the remaining

S−1 non-zero coordinates of c(t) are chosen uniformly at random from among the remain-

176



ing d − 1 coordinates. i(t) is chosen as follows: fix T0 = ⌊2
√
T ⌋. If t ≤ T0, then i(t)

alternates between 1 and 2, and for t > T0, i(t) alternates between 3 and 4. That is,

i(t) =



1 if t ≤ T0 and t is odd,

2 if t ≤ T0 and t is even,

3 if t > T0 and t is odd,

4 if t > T0 and t is even.

(7.9)

Experiment. We ran OMD with the nth block norm for n ∈ {20, 21, . . . , 212}, with n = 1

corresponding to OPGD and n = d = 212 (roughly) corresponding to OEG. For each

block norm, we searched for the step size5 η ∈ [10−2, 102] that minimizes the final regret

regretn(T ) after T time steps.

Results. As Figure 7.1 shows, regretn(T ) first decreases with the number n of blocks

and then increases. In particular, using n = 16 blocks leads to a regret of < 12.5, as

opposed to a regret of > 21 for either OPGD or OEG. This is in line with what is expected

from our theoretical results and shows the usefulness of block norms in certain regimes.

7.6 Conclusion

The choice of the mirror map in OMD captures the geometry of the OCO problem, and

can be exploited to show regret improvements in specific regimes of loss functions. As

we showed, specific block norm mirror maps can yield polynomial-in-dimension improve-

ments in regret in certain regimes over standard algorithms like OPGD and OEG.

However, very little may be known about the loss functions a priori, and adhering

to a fixed mirror map may lead to suboptimal regret. This is where our contribution of

a portfolio of block norm mirror maps comes in. We show that we can switch between
5Optimized using ternary search in the log-space.
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various block norms at runtime, achieving the regret rate of the best block norm, up to a
√
ln ln d factor.

A natural direction for future work is to explore other families of mirror maps that

interpolate between Euclidean and entropic geometries and to investigate whether a small,

universal portfolio of geometries can achieve near-optimal regret across all OCO settings.

More broadly, our results suggest viewing geometry itself as a learnable component of

online optimization.
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CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

And indeed there will be time

To wonder, “Do I dare?” and, “Do I dare?”

– T. S. Eliot

We studied the notion of portfolios, which are subsets of feasible solutions to optimiza-

tion problems such that optimizing over a portfolio is approximately the same as optimizing

over the complete set of feasible solutions. We designed portfolios for several problems,

spanning from combinatorial optimization to online learning to reinforcement learning.

There are many ways to interpret what portfolios are. Some of these interpretations

explain the thinking behind our results, while others motivate new applications. We present

some of these next.

Portfolios can be viewed as tools to make an optimization problem free of modeling

choices. This was the view we took in various fairness applications, where modeling

choices about fairness were built into the objective function as a parameter: for exam-

ple, as ‘p’ in Lp norms (Chapter 3) or p-means (Chapter 6), or as the weight vector w in

ordered norms (Chapter 4). By giving portfolios that work across all p or across all weight

vectors, we largely decouple them from the process of optimization and algorithm design.

Additionally, we hand back the power to make decisions about fairness to decision-makers,

who can look at the portfolio of options and choose their preferred option (rather than fix-

ing an abstract parameter for fairness). Our applications to suggest new pharmacies (see

Figure 1.1) and resource allocation policies (see Figure 1.2) are based on this idea.

One can also view portfolios as tools for parameter-free optimization. For example,

in Chapter 7, we construct portfolios across the problem geometry (choice of mirror map
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through parameter ‘n’ for the number of blocks) and step sizes (additional parameters).

These automatically tune to the problem geometry. More generally, in any optimization or

learning problem, one can seek a small portfolio of parameters that approximates learning

across the set of all parameters. This can have several benefits, ranging from computational

speed-ups (when portfolios are small, so one can restrict to searching over the parameters

in the portfolio only) to systematizing hyperparameter tuning in machine learning (which

is usually ad-hoc).

Another way to view portfolios is as a covering problem: say that a feasible solution

covers an objective if it is α-approximate for it. Then finding the smallest α-approximate

portfolio is the same as finding the minimum cover of solutions for all objectives. This view

gives structural insights into the problem at hand and can have interesting applications for

personalization. For example, different ML models may fit the needs of different people

in a population better, but can we find a small subset that is guaranteed to cater to every

person? This view also relates to the question of algorithmic robustness: how much can we

change the objective before a good solution becomes a poor solution?

Another useful way to think about portfolios is as a discretization of a continuous space

(of feasible solutions), where the discretization is tailored to a specific geometry (induced

by the objective functions). We took this view in Chapter 3 to design portfolios for conic

combinations, for example. This raises interesting questions about the suitability of differ-

ent discretizations in different settings. It may also help translate continuous optimization

problems into discrete optimization problems. This would be particularly helpful if the

portfolio size is polynomial in the problem dimension, as is the case with most of our

results.

These interpretations suggest that portfolios can (1) serve as a useful practical tool that

(2) unify similar ideas across several fields and (3) raise interesting algorithmic, combina-

torial, and optimization questions.

Finally, we list some interesting open directions for the problems studied in this the-
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sis and for portfolios more broadly. These are in addition to the problem-specific open

problems listed separately in each chapter.

(α, β)-portfolios. Portfolios guarantee that for all objectives in a given class C, there is

some portfolio solution that is an α-approximation for the objective. Often, it is also useful

for the solutions to have a universal performance guarantee of some kind. For example, we

may also want each portfolio solution x to not be too bad for any objective f ∈ C, i.e., x

should be a β-approximation for each f ∈ C for some β. That is, each portfolio solution

is also a simultaneous β-approximation for C. It would be interesting to explore this, or

similar bicriteria guarantees with one ‘local’ and one global criterion.

Is maximization harder than minimization? Chapter 3, Chapter 4, and Chapter 5 dis-

cussed many classes of objectives for minimization problems: conic combinations, Lp

norms, top-ℓ norms, ordered norms, and symmetric monotonic norms. Chapter 6 discussed

the class of p-means for maximization problems, the direct analogue of Lp norms in min-

imization. However, (1) in Chapter 6, we had to make the necessary assumption that the

underlying vectors were bounded away from 0 to get a portfolio for p-means, and the port-

folio size depended on this bound. No such assumption was necessary for Lp norms in min-

imization (Chapter 3). Further, it is unclear how (and whether) the techniques employed

for symmetric monotonic norms for minimization extend to analogous concave functions

for maximization. As we argue below, it seems that such an extension is not possible.

For example, consider our technique for obtaining portfolios for symmetric monotonic

norms: we exploited the fact that each symmetric monotonic norm in d dimensions is

O(log d)-approximated by some ordered norm. This allowed us to focus on portfolios

for ordered norms, which can be easier to handle since they are piecewise linear convex

functions. The analogue of this result does not hold for concave functions: the following

claim shows that the function f(x) =
√
x1x2 in 2 dimensions1 cannot be approximated by

1This function, like symmetric monotonic norms, is invariant to the permutation of coordinates, is mono-
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the concave analogues of ordered norms:

Claim 8.1. For x ∈ R2
≥0, define the function f(x) :=

√
x1x2 cannot be α-approximated by

an ordered concave function for any α > 0.

Proof. Suppose not, so that there exist 0 ̸= w1 ≥ w2 ≥ 0 such that gw(x) := w1x
↑
1 + w2x

↑
2

is an α-approximation to f(x) =
√
x1x2 for all x ∈ R2

≥0, i.e., 1
α
f(x) ≤ gw(x) ≤ αf(x) for

all x ≥ 0. Then for all t ≥ 1, choosing x = (κ, 1) gives that 1
α

√
κ ≤ w1 + w2κ ≤ α

√
κ.

The second inequality implies w2 = 0, but in that case the first inequality cannot hold.

Further, it is also unclear if restricting the domain – as we did in Chapter 6 for max-

imizing p-means functions – helps in this case. Specifically, even if we restrict that each

coordinate of each vector x ∈ D must be bounded between 1 and some κ > 1, the above

example shows that the best approximation we can hope for is Ω(
√
κ).

Online optimization with portfolios. A promising direction for future work is to de-

velop a unified theory of online optimization over small portfolios of decisions. Many

classical online problems – ranging from clustering and facility location to caching, en-

semble selection, and robust decision-making – share the structural feature that the learner

must repeatedly choose a subset of feasible actions rather than a single point. These prob-

lems naturally involve two competing forces: the desire for flexibility, which pushes the

algorithm to adapt its chosen subset in response to new information, and the desire for sta-

bility, which penalizes excessive changes through switching or movement costs. A general

model that simultaneously captures these effects would provide a common lens through

which diverse settings could be viewed.

One can imagine an online framework where, in each round, the learner selects a subset

of at most k feasible solutions and incurs a worst-case loss over an adversarially chosen

class of functions, while also paying a cost for modifying the subset relative to the previous

round. Such a formulation interpolates smoothly between several well-studied settings:

tone in each coordinate, and positively homogenous.
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online convex optimization (where k = 1), dynamic clustering and facility location (where

at most k facilities can be open at any time, and some cost must be paid to switch open

facilities), caching and paging (where the subset represents the cache), and multi-expert

or ensemble methods (where k active predictors are maintained). At the same time, it

introduces new conceptual challenges, as the learner’s state is now a combinatorial object

whose evolution must be controlled.

Building a theory for this class of problems could require new algorithmic ideas and

analytical tools that go beyond current techniques for either combinatorial online learning

or metric facility location. The interplay between robustness (through the max-min struc-

ture of the loss), sparsity (through the constraint that at most k feasible solutions can be

played at any point), and stability (through the modification cost) seems largely unexplored

in the general setting. Understanding the trade-offs between these forces could lead to prin-

cipled algorithms for a wide range of applications in machine learning, optimization, and

operations research, where decisions must be both adaptive and stable. This would offer a

natural continuation of the themes of this thesis – especially the use of structured decision

spaces and portfolios – while opening the door to a broad family of new problems.

Randomized portfolios. Another interesting direction is to ask if allowing randomization

strengthens the portfolio guarantees. Specifically, if we are allowed to use (feasible) convex

combinations of the solutions in the portfolio, can we improve the approximate guarantee

for a given portfolio size? In this case, given class C of objectives, and some set D of

feasible solutions, the approximation ratio of a portfolio X ⊆ D is defined as

max
f∈C

min
λ∈∆X

f

(∑
x∈X

λxx

)
, (8.1)

where ∆X is the probability simplex in RX .

This has a natural connection with the concept of integrality gap in approximation

algorithms. Given a combinatorial problem, a common approach is to write an integer
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program (IP) for it so that the vertices of the IP correspond to feasible solutions of the

combinatorial problem. Frequently, the IP is relaxed to a convex program (CP). The optimal

(fractional) solution to the LP is efficiently computed using standard machinery and then

rounded to a feasible solution of the original problem. The integrality gap is defined as the

ratio of the optimal over IP to the optimal over CP.

This connects to randomized portfolios defined above as follows: when the portfo-

lio size is 1, and there is a single function C = {f} to optimize, then the optimal of

(Equation 8.1) is precisely the optimal value of f for the original problem. However, as

the portfolio size increases, fractional solutions are allowed, and eventually the optimal of

(Equation 8.1) converges to the optimal value of f over CP.

In summary, the study of portfolios highlights how much structure can be revealed by

looking across objectives rather than optimizing any single one. As stated above, many

questions remain open, from sharper bounds to broader classes of objectives and dynamic

or data-driven variants.
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APPENDIX A

OMITTED PROOFS FROM Chapter 3

We give proofs omitted from Chapter 3 here. First, we give hardness results for FSFL

in Section A.1. Then, we give proofs omitted from the analysis of FSFL in Section A.2.

Finally, in Section A.3, we prove that portfolios for top-ℓ norms are not portfolios for Lp

norms, and can in fact have much bigger sizes.

A.1 Hardness Results for FSFL

In this section, we prove Theorem 3.3, which states that FSFL is hard to approximate within

constant factors (assuming P ̸= NP), and that even checking whether a solution is feasible

for the problem may be NP-hard. This implies that bicriteria approximation oracles are

unavoidable for the problem.

Theorem 3.3. Unless P = NP, (A) FSFL is inapproximable to within any constant factor

even when the objective is the sum of client distances, and (B) there is no polynomial-time

algorithm to check the feasibility of a solution to FSFL.

Proof. We show that solving FSFL to within any constant factor implies a polynomial-

time algorithm for the Subset Sum problem, which in turn implies P = NP. Recall that in

the Subset Sum problem, we are given a setA = {a1, . . . , aT} of positive integers and need

to determine whether we can partition A into two subsets with equal sum.

Consider a metric space with |C| = T + 2T 2 clients and |F | = 2 facilities. Each of

the two facilities f1 and f2 has opening cost c = cf1 = cf2 = 1
2

∑
t∈[T ] at. There are also

T 2 clients, each with revenue 0 at the location of each of the two facilities. The remaining

T clients have revenues a1, . . . , aT respectively, and each of them is at a distance of 1

from each facility; see Figure A.1. We set the subsidy parameter δ = 0, and the objective
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Figure A.1: The FSFL instance used in proof of Theorem 3.3

function g : RC → R is the L1 norm, i.e., we seek to minimize the sum of distances of

clients to their assigned facilities.

Consider an algorithmA that is a constant-factor approximation for FSFL. We construct

an algorithm for subset-set as follows: (i) Run A on the above instance. (ii) If the solution

(F ′,Π) returned by A opens both facilities, declare “Yes” (i.e., there is a subset S ⊆ A

whose elements sum exactly 1
2

∑
t∈T at). (iii) If (F ′,Π) opens only one |F ′| = 1 facility,

declare “No”.

The key observation is that the following statements are equivalent:

1. A can be partitioned into two subsets with equal sums.

2. Solution returned by A has objective value O(T )

3. Facility set F ′ output by algorithm A opens both facilities, i.e., |F ′| = 2.

It is easy to see that (2) implies (3): if one of the facilities is not open, all T 2 clients at

that location travel distance 2 to the other facility so that the objective value is≥ 2T 2. Next,

if (3) holds, then since this solution is feasible for FSFL, the total loss must be δ × R =

0 ×
∑

j∈C rj = 0. That is, we must have
∑

j:Π(j)=f1
rj ≥ cf1 = 1

2

∑
t∈[T ] at and similarly∑

j:Π(j)=f2
rj ≥ cf2 = 1

2

∑
t∈[T ] at. Since

∑
t at =

∑
j rj =

∑
j:Π(j)=f1

rj +
∑

j:Π(j)=f2
rj ,

we get a partition of A into two sets of equal sum.
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Finally, we show that (1) implies (2): let (S,A \ S) be the partition of A with equals

sums. Consider the following solution to FSFL: open both facilities, and assign each at ∈ S

to f1 and each at ∈ A \ S to f2. Similar to the argument above, this solution is feasible

for the problem. Further, it has objective value T , which is the best possible. Since A is an

O(1)-approximation for FSFL, its objective value must be O(T ). This concludes the proof

of Part 1.

This equivalence also implies that checking feasibility is NP-hard: indeed, the solution

with both facilities open is feasible if and only if A can be partitioned into two subsets with

equal sums.

A.2 Omitted Algorithms and Proofs for FSFL

We present omitted algorithms and proofs for the rounding algorithm for FSFL in Sec-

tion 3.5 here. First, we present algorithm α-PointRounding and its proof in Subsec-

tion A.2.1. Lemma 3.5, which bounds the subsidy of RoundToIntegralFacilities,

is proven in Subsection A.2.2. Proof of Lemma 3.6 that gives integral assignments given

integral facilities is given in Subsection A.2.3.

A.2.1 Algorithm α-PointRounding

We give the α-point rounding algorithm from [71] for completeness in Algorithm 13.

We restate the guarantee of the algorithm here:

Lemma 3.2. The fractional solution (x, y) output by α-PointRounding(x, y) (Algo-

rithm 13) satisfies:

1. It is ∆-close where ∆j ≤ 4max
(
1, 1

δ

)
τj for all j ∈ C, where τj =

∑
f xj,fdistj,f

is the expected distance in (x, y). That is, for any facility f ,

xj,f > 0 =⇒ distj,f ≤ 4max

(
1,

1

δ

)
τj.
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Algorithm 13 α-PointRounding(x, y)
input: fractional solution (x, y)
output: fractional solution (x, y)

1: set α = δ+2
2(δ+1)

2: for each client j ∈ C do
3: find order π on facilities in F so that distj,π(1) ≤ distj,π(2) ≤ . . .
4: for indices k = 1, 2, . . . denote the prefix sum zj,k :=

∑
i≤k xj,π(i)

5: let kj be the smallest index such that zj,kj ≥ α
6: set

xj,π(i) =

{
1

zj,kj
· xj,π(i) if i ≤ kj,

0 if i > kj.

7: for each facility f ∈ F , set yf = 1
α
yf

8: return (x, y)

2. The total loss of (x, y) is at most fraction 2δ of the total revenue, i.e.,
∑

f∈F ℓf ≤

2δ
∑

j∈C rj .

To prove this lemma, we first need another result for α-PointRounding:

Lemma A.1. For all clients j ∈ C and all facility subsets F1 ⊆ F ,

∑
f∈F1

xj,f ≥ −(1− α) +
∑
f∈F1

xj,f .

Proof. Note that we have
∑

f∈F xj,f =
∑

f∈F xj,f = 1 along with nonnegativity of x, x,

and therefore α-PointRounding can be viewed as shifting some mass from the prior

distribution xj to the posterior distribution xj . Intuitively, the lemma says that the algorithm

can shift no more than fraction 1− α of the mass away from any subset F1 of facilities.

To see this, we use some notation from the algorithm: π is the ordering on facilities such

that distj,π(1) ≤ distj,π(2) ≤ . . ., and kj is the least index k such that
∑

i≤k xj,π(i) ≥ α

Call facility π(i) massive if i ≤ kj and light otherwise. Therefore the total prior mass of

light facilities is at most 1−
∑

i≤k xj,π(i) ≤ 1− α. By construction, xj,π(i) < xj,π(i) if and
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only if i is light. Therefore, for any F1 ⊆ F , at most 1− α mass can be reduced from it:

∑
f∈F1

xj,f −
∑
f∈F1

xj,f ≤ 1− α.

Proof of Lemma 3.2. (Part 1) This part follows the argument from [71]. We present the

proof here for completeness. For any client j ∈ C, by definition,

τj =
∑
i

distj,π(i)xj,π(i) =
∑
i<kj

distj,π(i)xj,π(i) +
∑
i≥kj

distj,π(i)xj,π(i)

≥
∑
i≥kj

distj,π(i)xj,π(i) ≥
∑
i≥kj

∆jxj,π(i) = ∆j

∑
i≥kj

xj,π(i) ≥ ∆j(1− α),

where the second inequality holds since ∆j = maxf :xj,f>0 distj,f = distj,π(kj) ≥

distj,π(i) for all i ≥ kj by definition of ordering π. The third inequality holds since

kj is the first index such that
∑

i≤kj
xj,π(i) ≥ α, so that

∑
i<kj

xj,π(i) < α. Therefore, since

α = δ+2
2(δ+1)

, we have

∆j ≤
1

1− α
τj =

2(δ + 1)

δ
τj ≤

4

min(1, δ)
τj.

(Part 2) Intuitively, loss for a facility increases due to an increase in the operating cost cfyf ,

and a decrease in client revenue. Denote by F1 = {f ∈ F : cfyf >
∑

j∈C rjxj,f} the set

of unprofitable facilities in fractional solution (x, y). Then,

∑
f∈F

ℓf =
∑
f∈F1

ℓf =
∑
f∈F1

(
cfyf −

∑
j∈C

rjxj,f

)
=

1

α

∑
f∈F1

cfyf −
∑
j∈C

rj
∑
f∈F1

xj,f .

Next, from Lemma A.1, we have that
∑

f∈F1
xj,f ≥ −(1− α) +

∑
f∈F1

xj,f for all clients
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j ∈ C, so that the above becomes

∑
f∈F

ℓf ≤
1

α

∑
f∈F1

cfyf −
∑
j∈C

rj
∑
f∈F1

xj,f + (1− α)
∑
j∈C

rj.

Next, we note that cfyf ≤ ℓf +
∑

j∈C rjxj,f since (x, y) satisfies Equation 3.6 in Equa-

tion IP, so that the above becomes

∑
f∈F

ℓf ≤
1

α

(∑
f∈F1

ℓf +
∑
j∈C

rj
∑
f∈F1

xj,f

)
−
∑
j∈C

rj
∑
f∈F1

xj,f + (1− α)
∑
j∈C

rj

=
1

α

∑
f∈F1

ℓf +

(
1

α
− 1

)∑
j∈C

rj
∑
f∈F1

xj,f + (1− α)
∑
j∈C

rj

≤ 1

α
· δ
∑
j∈C

rj +

(
1

α
− 1

)∑
j∈C

rj + (1− α)
∑
j∈C

rj

≤
(
δ

α
+ 2

(
1

α
− 1

))∑
j∈C

rj.

The second last inequality follows since (x, y) has subsidy ≤ δ, and the last inequality

follows since (1 − α) ≤ (1/α − 1) for all α ∈ (0, 1). Setting α = δ+2
2(δ+1)

gives δ
α
+

2
(
1
α
− 1
)
= δ+2

α
− 2 = 2δ.

A.2.2 Proof of Lemma 3.5

For every core client j∗ ∈ C∗,

cf(j∗) = cf(j∗)
∑

f∈feasj∗

xj∗,f (Equation 3.4)

≤ cf(j∗)
∑

f∈feasj∗

yf (Equation 3.5)

≤
∑

f∈feasj∗

cfyf . (step 5)
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Further, the revenue of clients assigned to f(j∗) is

∑
j∈C

x′j,f(j∗) ≥
∑
j∈C

rj
∑

f∈feasj∗

xj,f (step 8)

=
∑

f∈feasj∗

∑
j∈C

rjxj,f

≥
∑

f∈feasj∗

(
cfyf − ℓf

)
. (Equation 3.6)

Denote unprofitable facilities in (x′, y′) by F1 = {f ∈ F : ℓ′f > 0}. Since the only open

facilities in (x′, y′) are f(j∗), j∗ ∈ C∗, we get from above that the total loss of (x′, y′) is

∑
f∈F

ℓ′f =
∑

j∗:f(j∗)∈F1

[
cf(j∗) −

∑
j∈C

rjxj,f(j∗)

]

≤
∑

j∗:f(j∗)∈F1

 ∑
f∈feasj∗

[
cfyf − (cfyf − ℓf )

]
=

∑
j∗:f(j∗)∈F1

∑
f∈feasj∗

ℓf ≤
∑
j∗∈C∗

∑
f∈feasj∗

ℓf .

Since sets feasj∗ , j
∗ ∈ C∗ are disjoint for different core clients j∗, we get that this is

bounded by
∑

f∈F ℓf .

A.2.3 Proof of Lemma 3.6

In this section, we prove Lemma 3.6 that given a δ′-subsidized ∆′-close fractional solution

(x′, y′) with integral y′, obtains a (δ′ + θ)-subsidized ∆′-close integral solution (x′′, y′).

Proof of Lemma 3.6. We prove the guarantee of distances first, and then on the losses.

Distances. By construction (Lemma 3.7), x′′ only assigns j to some facility f such that

x′j,f > 0 (i.e., f is in the support of x′j). Therefore, distj,f ≤ ∆′
j by definition.

Subsidy. For brevity, let us denote the initial load/revenue of facility f by r′(f) :=∑
j∈FC

x′j,frj , the final load/revenue by r′′(f) :=
∑

j∈FC
x′′j,frj , and the change in revenue

by ρ(f) := r′′(f)− r′(f). The above then says that ρ(f) ≤ rj(f) for some j ∈ Cf := {j′ ∈
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C : x′j,f > 0} for all f ∈ F . By the small revenues assumption, rj(f) ≤ θcf , so that

r′′(f)− r′(f) = ρ(f) ≤ θcf .

Denote F↑ to be the set of all facilities f whose load/revenue increases, i.e., ρ(f) ≥ 0,

and similarly F↓ is the set of all facilities f whose load/revenue decreases. Since the total

revenue r(C) :=
∑

j∈C rj is constant, the total decrease in revenue across facilities F↓

must come from the total increase in revenue across facilities F↑. Therefore, to track the

total decrease in revenue in F↓ (and therefore the increase in total loss), we will track the

total increase in revenue across facilities in F↑. Consider a facility f ∈ F↑. There are three

cases:

1. f was profitable in (x′, y′), i.e., we had cf ≤ r′(f). In this case, the contribution of

f to the increase in revenue is

ρ(f) ≤ θcf ≤ θr′(f) = θ(r′′(f)− ρ(f)) ≤ θr′′(f).

2. f was unprofitable in (x′, y′) and loss ℓ′f of f in (x′, y′) was at least ρ(f), i.e., ℓ′f ≥

ρ(f). In this case, the new loss of f in (x′′, y′) is ℓ′′f = ℓ′f − ρ(f). That is, loss

decreases by ρ(f). Then, any decrease in revenue in F↓ due to ρ(f) is compensated

by this decrease in loss.

3. f was unprofitable in (x′, y′) and loss ℓ′f of f in (x′, y′) was at most ρ(f), i.e., ℓ′f ≤

ρ(f). In this case,

ρ(f) ≤ θcf = θ
(
ℓ′f + r′(f)

)
≤ θ (ρ(f) + r′(f)) = θr′′(f).
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The total increase in revenue in cases 1 and 3 combined is therefore at most

θ
∑
f∈F↑

r′′(f) = θ
∑
f∈F↑

∑
j∈C

x′′j,frj = θ
∑
j∈C

rj
∑
f∈F↑

x′′j,f ≤ θ
∑
j∈C

rj.

That is, the total decrease in loss overall when rounding from (x′, y′) to (x′′, y′) is upper

bounded by θ
∑

j∈C rj , thus increasing the subsidy by at most θ.

A.3 Gap Between Portfolio Sizes for Top-ℓ Norms and Lp Norms

In this section, we show that portfolios for one class of interpolating functions may not be

portfolios for another class of interpolating functions. Specifically, we give a setD and base

functions h1, . . . , hd : D → R≥0 where the class of top-ℓ norms admits an optimal portfolio

of size 2 but any O(1)-approximate portfolio for Lp norms must have size≃ (ln d)1/3. This

shows that large gaps between portfolio sizes for different norms are possible. Compare this

with the result for portfolios of size 1 or simultaneous approximations, where [9] show that

simultaneous α-approximations for top-ℓ norms are also simultaneous α-approximations

for Lp norms.

Lemma A.2. For all large enough d ∈ Z≥0, there exists a set D ⊆ and base functions

h1, . . . , hd : D → R≥0 such that

1. There is an optimal (i.e., 1-approximate) portfolio X of size 2 for all top-ℓ norms.

2. Any O(1)-approximate portfolio X ′ for all Lp norms must have size Ω
((

ln d
ln ln d

)1/3).

Proof. Let S = S(d) be a super-constant that we will fix later, and N be the largest integer

such that SN2 ≤ d. Then N = Ω(
√
logS d). For s ∈ [1, N ], define vectors v(s) ∈ Rd as:

v(s) = (S−2s, . . . , S−2s︸ ︷︷ ︸
Ss2

, 0, . . . , 0).

Let D = {v(1), . . . , v(N)}. Base functions hi(x) = xi for all x ∈ D. We prove Part 1
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of the lemma statement first. Specifically, we will show that either v(1) or v(N) is optimum

for all top-ℓ norms, so that X = {v(1), v(N)} is an optimal portfolio for all top-ℓ norms.

We have that the top-ℓ norm of v(s) is

∥v(s)∥(1ℓ) =


ℓS−2s if ℓ ≤ Ss2 ,

Ss2−2s if ℓ > Ss2 .

Fix ℓ. For s such that Ss2 < ℓ, ∥v(s)∥(1ℓ) = Ss2−2s increases as s increases since s ≥ 1.

For s such that Ss2 > ℓ, ∥v(s)∥(1ℓ) = ℓS−2s decreases as s increases. Therefore, for each

top-ℓ norm, either v(1) or v(N) is optimum. This proves Part 1.

We move to Part 2. Consider Lp norms for p ∈ [1, N ]. Then we claim that for appropri-

ate choice of S = S(d), (1) for all p ∈ [1, N ], argminv(s)∥v(s)∥p = v(p). That is, vector

v(p) has the minimum norm ∥ · ∥p among all vectors in D, and (2) for all p ∈ [1, N ] and

s ̸= p, v(s) is not an O(1)-approximation for minimizing ∥ · ∥p. Together, the two claims

imply that any O(1)-approximate portfolio for Lp norms, p ∈ [1, N ] must contain each of

v(1), . . . , v(N). Note first

∥v(s)∥p =
(
Ss2 · S2ps

)1/p
= S

s2

p
−2s. (A.1)

To show that this is minimum at s = p, consider ϕ(x) = x2

p
− 2x. It attains its minimum at

x = p. Since S > 1, this implies that argminv(s)∥v(s)∥p = v(p), and the minimum is S−p.

Further, for any s ̸= p, write s = p+θ for θ ∈ [1, N ]. We have logS ∥v(s)∥p =
(p+θ)2

p
−

2(p+θ) = (p+θ)
(
1 + θ

p
− 2
)
= θ2−p2

p
= θ2

p
−p = θ2

p
+logS ∥v(p)∥p. Therefore, ∥v(s)∥p

∥v(p)∥p ≥

S
θ2

p ≥ S
1
p = exp((lnS)/p) Since p ≤ N , this is at least exp( lnS

N
). Choose S such that

lnS = (ln d)1/3(ln ln d)2/3. Then N = Θ(
√

logS d) = Θ
(√

ln d
lnS

)
= Θ

((
ln d

ln ln d

) 1
3

)
.

Therefore, ln
(

∥v(s)∥p
∥v(p)∥p

)
≥ lnS

N
= Θ(ln ln d). That is, ∥v(s)∥p = ω(∥v(p)∥p). The size of

portfolio {v(1), . . . , v(N)} for Lp norms is Θ
((

ln d
ln ln d

)1/3).
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APPENDIX B

OMITTED PROOFS FROM Chapter 4

We supply proofs omitted from Chapter 4 here.

B.1 Omitted proofs from Section 4.2

Proof of Lemma 4.1. 1. For any objective h ∈ C,

min
x∈X2

h(x) ≤ α2 min
x∈X1

h(x) ≤ α2α1min
x∈D

h(x).

The first inequality follows since X2 is an α2-approximate portfolio for C over X1,

and the second follows since X1 is an α1-approximate portfolio for C over D.

2. For each h ∈ C,

min
x∈D

h(x) = min
i∈[n]

min
x∈Di

h(x) ≤ min
i∈[n]

αmin
x∈Xi

h(x) = α min
x∈∪i∈[n]Xi

h(x).

Therefore, ∪i∈[n]Xi is an α-approximate portfolio for C over D.

Next, we prove Lemma 4.5 that gives (1 + ε)-approximate portfolio of size poly(d1/ε)

for symmetric monotonic norms for arbitrary feasible setD and base objectives h1, . . . , hd :

D → R≥0. Our proof is a slight modification of [20]’s proof that counts the number of

ordered norms up to a (1 + ε)-approximation.

Proof of Lemma 4.5. Denote v∗ = minx∈D ∥h(x)∥∞, with the corresponding vector de-

noted x∗. Let D = {x ∈ D : ∥h(x)∥∞ ≤ dv∗}. We first claim that D is an optimal

portfolio for all symmetric monotonic norms over D, i.e., for each symmetric monotonic

norm ∥ · ∥, the corresponding minimum norm point argminx∈D∥h(x)∥ ∈ D. To see this,
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let x = argminx∈D∥h(x)∥. Then,

∥h(x)∥∞∥(1, 0, . . . , 0)∥ ≤ ∥h(x)∥ (∥ · ∥ is symmetric)

≤ ∥h(x∗)∥ (optimality of x)

≤ ∥h(x∗)∥∞∥(1, . . . , 1)∥

≤ v∗d∥(1, 0, . . . , 0)∥.

This implies that ∥h(x)∥∞ ≤ dv∗, or that x ∈ D. Next, we will place all vectors in

D in one of dO(1/ε) buckets such that for any two vector h(x),h(y) in the same bucket,

h(x) ⪯ (1 + ε)h(y) and h(y) ⪯ (1 + ε)h(x), so that by Lemma 2.1, ∥h(x)∥ ≃1+ε ∥h(y)∥

for all symmetric monotonic norms ∥ · ∥. Consequently, it is sufficient to pick just one

vector in each bucket to get a (1 + ε)-approximate portfolio for all symmetric monotonic

norms over D.

Denote T = ⌈log1+ ε
3
d⌉. Each bucket B(a1, . . . , aT ) is specified by an increasing se-

quence a1 ≤ a2 ≤ · · · ≤ aT of integers that lie in [0, 2T ]. The number of such sequences is(
3T
T

)
≤ 3T = dO(1/ε), bounding the number of buckets. Let ci = ⌊(1 + ε/3)i⌋ for i ∈ [T ].

Then x lies in bucket B(a1, . . . , aT ) where ai =
⌊
log1+ ε

3

(
1
v∗
∥h(x)∥(1ci )

)⌋
.

First, we show that this assignment is valid, i.e., each ai ∈ [0, 2T ]. Indeed,

1

v∗
∥h(x)∥(1ci )

≤ 1

v∗
ci∥h(x)∥∞ ≤

d∥h(x)∥∞
v∗

≤ d2.

The final inequality follows since x ∈ D. Therefore, ai ≤ log1+ ε
3
d2 ≤ 2T . Next, we

claim that for any x, y ∈ B(a1, . . . , ad), h(x) ⪯ (1 + ε)h(y). Fix any k ∈ [d], and

let i ∈ [0, T ] such that ci ≤ k < ci+1. Note that by definition of ai, we have ai ≤

log1+ ε
3

(
1
v∗
∥h(x)∥(1ci )

)
≤ ai + 1, and the same inequality also holds for y. Then,

∥h(x)∥(1k) ≤
k

ci
∥h(x)∥(1ci )

≤ k

ci

(
vi (1 + ε/3)ai+1)
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=
k(1 + ε/3)

ci

(
vi (1 + ε/3)ai+1)

≤ k(1 + ε/3)

ci
∥h(y)∥(1ci )

≤ k(1 + ε/3)

ci
∥h(y)∥(1k).

Finally, k
ci
≤ ci+1−1

ci
≤ (1+ ε/3), so that ∥h(x)∥1k

∥h(y)∥1k
≤ (1+ ε/3)2 = 1+ 2

3
ε+ 1

9
ε2 ≤ 1+ ε

for all ε ∈ (0, 1].

Next, we prove Lemma 4.3, which characterizes the dual norms of ordered norms.

Given a vector v ∈ Rd, we denote σv = (v1, v1 + v2, . . . , v1 + · · · + vd) and ∆v =

(v1 − v2, v2 − v3, . . . , vd) for brevity. Note that with this notation, we have the top-ℓ norm

∥v∥(1ℓ) = (σ|v|↓)ℓ. Further, we have v⊤u = (σv)⊤(∆u) for all vectors u, v ∈ Rd.

Proof of Lemma 4.3. Let K = {x ∈ Rd : ∥x∥(w) ≤ 1} be the unit norm ball for ∥ · ∥(w),

and let K∗ = {y ∈ Rd : y⊤x ≤ 1 ∀ x ∈ K} be the unit norm ball of its dual norm. Also

denote K =
{
y ∈ Rd : maxk∈[d]

∥y∥(1k)

∥w∥(1k )
≤ 1
}

. We will show that K = K∗.

Suppose y ∈ K. For any x ∈ K, we have

y⊤x ≤ (|y|↓)⊤|x|↓ (rearrangment inequality)

= (σ|y|↓)⊤(∆|x|↓) (alternating sum)

≤ (σw)⊤(∆|x|↓) (y ∈ K)

= ∥x∥(w) (alternating sum)

≤ 1. (x ∈ K)

That is, y ∈ K∗. Conversely, assume y ∈ K∗ so that y⊤x ≤ 1 for each x ∈ K. Since K∗

is symmetric, assume without loss of generality that y1 ≥ · · · ≥ yd ≥ 0, other cases are

handled similarly. It is easy to check that for each k ∈ [d], x(k) := 1
(σw)k

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0)

is in K. Therefore 1 ≥ y⊤x(k) = (σy)k
(σw)k

= (σ|y|↓)k
(σw)k

, implying that y ∈ K.

Next, we prove the Ordered Cauchy-Scwarz inequality (Lemma 4.4).
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Proof of Lemma 4.4. This proof is similar to the proof of Lemma 4.3. For any x, y ∈ Rd,

we have

y⊤x ≤ (|y|↓)⊤|x|↓ (rearrangment inequality)

=
∑
k∈[d]

(σ|y|↓)k(∆|x|↓)k (alternating sum)

≤ ∥y∥∗(w)

∑
k∈[d]

(σw)k(∆|x|↓)k (definition of ∥y∥∗(w))

= ∥y∥∗(w)∥x∥(w) (alternating sum).

Further, the first inequality holds if and only if x, y are order-consistent, i.e., if and only if

there exists an order π such that x↓ = xπ and y↓ = yπ. The second inequality holds if and

only if for each k, (σ|y|↓)k(∆|x|↓)k = ∥y∥∗(w)(σw)k(∆|x|↓)k, which happens if and only if

(∆|x|↓)k = 0 or (σ|y|↓)k
(σw)k

= ∥y∥∗(w).

Lower bound on portfolio sizes. We prove the following theorem that lower bounds the

portfolio sizes for ordered and symmetric monotonic norms:

Theorem 4.3. There exist sets D and base functions h1, . . . , hd : D → R≥0 such that any

O(log d)-approximate portfolio for ordered norms must have size dΩ(1/ log log d). The same

bound holds for symmetric monotonic norms.

Since ordered norms are a subset of symmetric monotonic norms, it is sufficient to

prove the result for ordered norms. First, we need a counting lemma:

Lemma B.1. Given L ≥ 1, Let T be the set of integral sequences a = (a0, . . . , aL) such

that ai−1 ≤ ai ≤ ai−1 + 1 for all i ∈ [L] and a0 = 0. Then there exists a subset T ⊆ T

such that (1) |T | ≥ 2L/(2L2), and (2) for any two sequences a, a′ ∈ T , there exists an i

such that a′i < ai, and vice-versa.

Proof. We first show that |T | = 2L. For any such sequence a, consider ϕ(a) = (a1 −

a0, . . . , aL − aL−1). Then ϕ(a) maps sequences in T to binary sequences (b1, . . . , bL);
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further, ϕ is bijective. Therefore, |T | is the number of binary sequences (b1, . . . , bL), which

is 2L.

Also note that ≥ is a partial order on T : a ≤ a′ if and only if a′i ≥ ai for all i ∈ [0, L].

For any distinct a, a′ such that a′ ≥ a, we must have that
∑

i∈[L] a
′
i ≥ 1 +

∑
i∈[L] ai.

Further,
∑

i∈[L] ai ≤ L2 for all a ∈ T . Therefore, the length of any chain in order ≥ on T

is at most L2 + 1. This means that any chain decomposition of ≥ on T must have at least

|T |/(L2 + 1) ≥ 2L/(2L2) chains. By Dilworth’s theorem [146], this is also the size of the

largest anti-chain. But an anti-chain is exactly the set T we are looking for.

We are ready to prove Theorem 4.3:

Proof of Theorem 4.3. Throughout this proof, we will have hi(x) = xi, so that h(x) = x,

and minimizing ∥h(x)∥ is the same as minimizing ∥x∥.

Let S = log3 d, and let L be such that S0 + S1 + · · ·+ SL = d. Then L = Θ
(

log d
logS

)
=

Θ
(

log d
log log d

)
, or that S/L = Ω(log2 d).

Let T be the set of integral sequences from the previous lemma, i.e., each sequence

a = (a0, . . . , aL) is such that ai−1 ≤ ai ≤ ai−1 + 1 for all i ∈ [L] and a0 = 0, and for any

two sequences a, a′ ∈ T , there exists i such that a′i < ai. Define

x(a) =
(
S−a0︸︷︷︸
S0

, S−a1 , . . . , S−a1︸ ︷︷ ︸
S1

, . . . , S−aL , . . . , S−aL︸ ︷︷ ︸
SL

)
.

Note that since ai ≥ ai−1, x↓ = x. Further, since ai ≤ ai−1 + 1, we have ai − i ≤

ai−1 − (i− 1). Define

w(a) =
(
Sa0−0︸ ︷︷ ︸

S0

, Sa1−1, . . . , Sa1−1︸ ︷︷ ︸
S1

, . . . , SaL−L, . . . , SaL−L︸ ︷︷ ︸
SL

)
.

Then

∥x(a)∥(w(a)) = x(a)⊤w(a) =
∑

i∈[0,L]

S−aiSai−iSi = L.
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Further, for any other a′ = (a′0, . . . , a
′
L) ∈ T , there exists i such that a′i < ai, we get

∥x(a′)∥(w(a)) ≥ S−a′iSai−iSi > S.

Since S/L = Ω(log2 d), this means that x(a′) is an ω(log d)-approximation for ∥ · ∥(w(a)).

That is, any O(log d)-approximate portfolio for T for ordered norms must have size |T | ≥

2L/(2L2). However,

2L

2L2
= 2Θ((log d)/ log log d)Θ

(
(log log d)2

(log d)2

)
= dΘ(

1
log log d)−O( log log d

log d ) = dΩ(
1

log log d).

To prove the second part of the theorem, we claim that in fact even for conv(T ), we

have any O(log d) portfolio for ordered norms must have size ≥ |T | = dΩ(1/ log log d). Let

x =
∑

b∈T λbx(b) ∈ conv(T ). Fix a ∈ T . We will show that for all x such that 1 − λa >

1/4, ∥x∥(w(a)) = Θ(S/L)∥x(a)∥(w(a)). That is, the any O(log d)-approximate minimizer x

of ∥ · ∥(w(a)) in conv(T ) must have λa ≥ 3
4
, implying the claim.

Note that for each b, x(b)↓ = x(b). Therefore,

∥x∥w(a) =

(∑
b∈T

λbx(b)

)⊤

w(a) =
∑
b∈T

λb∥x(b)∥(w(a))

= λa∥x(a)∥(w(a)) +
∑
b ̸=a

λb∥x(b)∥(w(a))

≥ λaL+ S
∑
b̸=a

λb ≥ S(1− λa) ≥ S/4.

Where the last inequality follows from the assumption that 1 − λa ≥ 1/4. Therefore,

∥x∥(w(a)) = Θ(S/L) = ω(log d). This finishes the proof.

B.2 Omitted proofs from Section 4.5

Proof of Lemma 4.12. For each i ∈ [r], j ∈ [d], by construction we have Ãi,j ≤ Ai,j , so

that if x ∈ P , then Ax ≥ Ãx ≥ 1r, i.e., P̃ ⊆ P .
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We claim that for all x ∈ P there is some x̃ ∈ P̃ such that x̃ ⪯ (1 + ε)x. From

Lemma 2.1, this claim implies that ∥x̃∥ ≤ (1 + ε)∥x∥ for all symmetric monotonic norms

∥ · ∥, and therefore that minx̃∈P̃ ∥x̃∥ ≤ (1 + ε)minx∈P ∥x∥. This implies the lemma.

Define x̃ =
(
1 + ε

2

) (
x+ ε∥x∥1

3d
(1, . . . , 1)

)
. We have for all k ∈ [d]

∥x̃∥(1k) =
(
1 +

ε

2

)(
∥x∥(1k) +

kε∥x∥1
3d

)
.

However, ∥x∥1
d
≤ ∥x∥(1k)

k
, so that the above gives us

∥x̃∥(1k) ≤
(
1 +

ε

2

)(
∥x∥(1k) +

ε∥x∥(1k)

3

)
=
(
1 +

ε

2

)(
1 +

ε

3

)
∥x∥(1k).

For all ε ∈ (0, 1],
(
1 + ε

2

) (
1 + ε

3

)
≤ 1 + ε, so that x̃ ⪯ (1 + ε)x. Next, we show that

x̃ ∈ P̃ . Clearly, x̃ ≥ x ≥ 0; it remains to show that Ãx̃ ≥ 1r.

Fix i ∈ [r]; denote the ith rows of A, Ã respectively by Ai, Ãi. From the algorithm, for

j ̸∈ B(i), we have Ãi,j ≥ 1
1+ ε

2
Ai,j . Therefore,

Ã⊤
i x̃ =

∑
j∈[d]

Ãi,jx̃j =
∑

j ̸∈B(i)

Ãi,jx̃j (Ãi,j = 0 ∀ j ∈ B(i)),

≥ 1

1 + ε
2

∑
j ̸∈B(i)

Ai,jx̃j

=
1

1 + ε
2

 ∑
j ̸∈B(i)

Ai,j

(
1 +

ε

2

)(
xj +

ε∥x∥1
3d

)
=
∑

j ̸∈B(i)

Ai,jxj +
ε∥x∥1
3d

∑
j ̸∈B(i)

Ai,j.

Now,
∑

j ̸∈B(i)Ai,j ≥ a∗i ≥
µ
d

∑
j∈B(i)Ai,j =

3d
ε

∑
j∈B(i)Ai,j . Therefore,

ε∥x∥1
3d

∑
j ̸∈B(i)

Ai,j ≥
ε∥x∥1
3d

· 3d
ε
·
∑

j∈B(i)

Ai,j ≥
∑

j∈B(i)

Ai,jxj.

Together, this means that Ã⊤
i x̃ ≥ A⊤

i x ≥ 1. Since this holds for all i ∈ [r], x̃ ∈ P .
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B.2.1 Proof of Lemma 4.16

We restate the relevant convex programs and the lemma here for convenience:

min ∥x∥(w) s.t. Ax ≥ 1r, x ∈ Q. (primal’)

min ∥A⊤λ∥∗(w) s.t. λ ∈∆r. (dual)

Lemma 4.16. Given a weight vector w, ∥x(w)∥(w)∥A⊤λ(w)∥∗(w) = 1. Further, there is a

reduced order ρ such that both x(w), A⊤λ(w) satisfy ρ.

For j ∈ [d], denote the jth column of A as A(j). A(j) is an r-dimensional vector.

Recall that S1, . . . , SNr form a partition of [d] such that for l ∈ [N r], and for all j, j′ ∈ Sl,

A(j) = A(j′). Also recall that Q is the set of all vectors x ≥ 0 such that xj = xj′ for all

j, j′ ∈ Sl, for all l ∈ [N r]. From Lemma 4.13, x(w) ∈ Q.

First, for all x ∈ P and λ ∈∆r, we get by Ordered Cauchy-Schwarz (Lemma 4.4) that

∥x∥(w)∥A⊤λ∥∗(w) ≥ λ⊤Aw. Since x ∈ P , Ax ≥ 1r, and since λ ∈ ∆r, λ⊤Ax ≥ 1. Now,

suppose that there is some λ ∈ ∆r such that ∥x(w)∥(w)∥A⊤λ∥∗(w) = 1, i.e. equality holds.

Then, since λ(w) = argminλ∈∆r
∥λ∥∗(w), we get that

1 = ∥x(w)∥(w)∥A⊤λ∥∗(w) ≥ ∥x(w)∥(w)∥A⊤λ(w)∥∗(w) ≥ 1.

Then equality must hold everywhere, and in particular ∥x(w)∥(w)∥A⊤λ(w)∥∗(w) = 1. Fur-

ther, from Ordered Cauchy-Schwarz, it is necessary that x(w), A⊤λ(w) satisfy some order

π ∈ Perm(d).

From Lemma 4.13, x(w) ∈ Q, i.e., for all j, j′ ∈ Sl, for all l ∈ [N r], x(w)j = x(w)j′ .

Similarly, (A⊤λ(w))j is the dot product of the jth column of A with λ(w), and therefore

A⊤λ(w) ∈ Q as well. Since x,A⊤λ(w) both satisfy order π, π must induce a reduced

order ρ on S1, . . . , SNr . This implies the lemma.

It remains to prove that there exists λ such that ∥x(w)∥(w)∥A⊤λ∥∗(w) = 1. Our proof
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is along the lines of the proof of strong duality using Slater’s conditions [147], although

we use the properties of ordered norms at several places. We will need the following two

lemmas:

Lemma B.2. For vector y ∈ Rd such that y1 ≥ · · · ≥ yd ≥ 0, let t1 ≤ t2 ≤ · · · ≤ tT = d

be indices such that

y1 = · · · = yt1 ≥ yt1+1 = · · · = yt2 ≥ · · · ≥ ytT−1+1 = · · · = ytT .

Then for any weight vectorw, ∥y∥∗(w) = maxk∈[d]
∥y∥(1k)

∥w∥(1k)
is achieved at some k ∈ {t1, . . . , tT}.

Proof. It is sufficient to show that for all i ∈ [T ] and ti−1 ≤ k ≤ ti, we have

max

{
∥y∥(1ti−1 )

∥w∥(1ti−1 )

,
∥y∥(1ti )

∥w∥(1ti )

}
≥
∥y∥(1k)

∥w∥(1k)

.

Denote z = yti−1+1 = · · · = yti . Consider (1 − λ)∥y∥(1ti−1 )
+ λ∥y∥(1ti )

for λ = k−ti−1

ti−ti−1
.

Then λ ∈ [0, 1], and

(1−λ)∥y∥(1ti−1 )
+λ∥y∥(1ti )

= ∥y∥(1ti−1 )
+λz(ti−ti−1) = ∥y∥(1ti−1 )

+(k−ti−1)z = ∥y∥(1k).

Further,

(1− λ)∥w∥(1ti−1 )
+ λ∥w∥(1ti )

= ∥w∥(1ti−1 )
+ λ(wti−1+1 + · · ·+ wti)

= ∥w∥(1ti−1 )
+ (k − ti−1)

wti−1+1 + · · ·+ wti

ti − ti−1

.

Since wti−1+1 ≥ · · · ≥ wti , we get that

wti−1+1 + · · ·+ wti

ti − ti−1

≤
wti−1+1 + · · ·+ wk

k − ti−1

.
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Plugging this back in, we get (1− λ)∥w∥(1ti−1 )
+ λ∥y∥(1ti )

≤ ∥w∥(1k). Therefore,

∥y∥(1k)

∥w∥(1k)

≤
(1− λ)∥y∥(1ti−1 )

+ λ∥y∥(1ti )

(1− λ)∥w∥(1ti−1 )
+ λ∥w∥(1ti )

≤ max

{
∥y∥(1ti−1 )

∥w∥(1ti−1 )

,
∥y∥(1ti )

∥w∥(1ti )

}
.

Lemma B.3. For µ ∈ Rr
≥0,

sup
x∈Q

µ⊤Ax− ∥x∥(w) =


0 if ∥µ⊤A∥∗(w) ≤ 1,

∞ otherwise.

Proof. Denote y = A⊤µ. Then y ∈ Rd, and yj = (A(j))⊤µ. If ∥y∥∗(w) ≤ 1, we get from

Ordered Cauchy-Schwarz (Lemma 4.4) that

y⊤x− ∥x∥(w) ≤ ∥y∥∗(w)∥x∥(w) − ∥x∥(w) ≤ (∥y∥∗(w) − 1)∥x∥(w) ≤ 0.

However, 0 ∈ Q. Therefore y⊤x− ∥x∥(w) = 0 when x = 0, so that

sup
x∈Q

y⊤x− ∥x∥(w) = 0.

Now suppose that ∥y∥∗(w) ≥ 1. Note that since yj = (A(j))⊤µ, for all j, j′ ∈ Sl for some

l, we get yj = yj′ .

Relabel the indices [N r] so that for all j ∈ Sl and j′ ∈ Sl+1, yj ≥ yj′ . Further, relabel

indices [d] so that S1 = {1, . . . , |S1|}, S2 = {|S1|+ 1, . . . , |S1|+ |S2|} etc, i.e.,

y1 = · · · = y|S1| ≥ y|S1|+1 = · · · = y|S1|+|S2| ≥ · · · ≥ yd−|SNr |+1 = · · · = yd ≥ 0.

By the previous lemma ∥y∥∗(w) = maxk∈[d]
∥y∥(1k)

∥w∥(1k)
achieved at some k = |S1| + · · · + |Sl|.

For brevity, denote this number as k∗.
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Define x such that x1 = x2 = · · · = xk∗ =
α

∥w∥(1k∗ )
and xk∗+1 = · · · = xd = 0 where α

is an arbitrarily large number. Then x ∈ Q and ∥x∥(w) = α. Further,

y⊤x = ∥y∥(1k∗ )
α

∥w∥(1k∗ )
.

Since
∥y∥(1k∗ )

∥w∥(1k∗ )
= ∥y∥∗(w) > 1, we get that y⊤x − ∥x∥(w) = α

( ∥y∥(1k∗ )

∥w∥(1k∗ )
− 1
)

, which can be

arbitrarily large as α grows. This proves the second case as well.

We proceed to prove that there exists λ such that ∥x(w)∥(w)∥A⊤λ∥∗(w) = 1. LetA be the

set of points (v1, . . . , vr, t) such that there exists an x ∈ Q with vi ≥ 1−A⊤
i x for all i ∈ [r]

and t ≥ ∥x∥(w). It is easy to check that A is convex. Next, define B = {(0, . . . , 0︸ ︷︷ ︸
r

, s) : s <

∥x(w)∥(w)}. Clearly, B is convex. It is easy to see that A ∩ B = ∅. Therefore, there is a

separating hyperplane between A,B, i.e. there exist µ ∈ Rd, δ, α ∈ R such that

µ⊤v + δt ≥ α ∀ (v, t) ∈ A, (B.1)

δs < α ∀s < ∥x(w)∥(w). (B.2)

The second equation implies that δ ≥ 0 since otherwise we can choose s to be arbitrarily

small and δs becomes arbitrarily large. Then, we get δ∥x(w)∥(w) ≤ α.

Further, by a similar argument, µ ≥ 0. Applying Equation B.1 to point (1−A⊤
1 x, . . . , 1−

A⊤
r x, ∥x∥(w)) ∈ A we get that for all x ∈ Q,

∑
i∈[r]

µi − µ⊤Ax+ δ∥x∥(w) ≥ α ≥ δ∥x(w)∥(w).

Case I: µ = 0. Then δ∥x∥(w) ≥ α ≥ δ∥x(w)∥(w). Since not both µ, δ can be zero,

δ > 0. Further, ∥x(w)∥(w) > 0, so if we pick x = 0 ∈ Q, we get a contradiction.

Case II: µ ̸= 0, so we get that all for all x ∈ Q,
∑

i∈[r] µi − µ⊤Ax + δ∥x∥(w) ≥ α ≥

δ∥x(w)∥(w). If δ = 0, then
∑

i µi−µ⊤Ax ≥ 0 for all x ∈ Q. Pick arbitrarily large x again,
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giving a contradiction. Therefore, δ > 0; assume without loss of generality that it is 1.

That is, for all x ∈ Q,
∑

i µi−µ⊤Ax+∥x∥(w) ≥ ∥x(w)∥(w). Taking infimum on the left-

hand side and applying Lemma B.3, we get that
∑

i µi ≥ ∥x(w)∥(w) with ∥µ⊤A∥∗(w) ≤ 1.

Then λ := µ∑
i µi
∈∆r. Therefore,

1 ≥ ∥µ⊤A∥∗(w) =
∑
i

µi∥λ⊤A∥∗(w) ≥ ∥x(w)∥(w)∥λ⊤A∥∗(w).
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APPENDIX C

OMITTED PROOFS FROM Chapter 6

We include omitted proofs and various lemmas for Chapter 6 here.

C.1 Proof of Theorem 6.1

The following lemma follows from the monotonicity of p-mean functions (Lemma 6.1):

Lemma C.1. f(p) := maxx∈D E[Mp(h(x))] is monotone increasing in p.

Proof. Denote x(p) = argmaxx∈DE[Mp(h(x))]. Then, by Lemma 6.1,

f(p) = E[Mp(h(x
(p)))] ≤ E[Mq(h(x

(p)))] ≤ f(q).

The following two lemmas show that the p-mean for p = −∞ is α-approximated by

the p0-mean where p0 = − ln d
ln(1/α)

, so we can effectively restrict to [−p0, 1] when finding

portfolios:

Lemma C.2. Given a vector z ∈ Rd
>0 and α ∈ (0, 1), define p0 = − ln d

ln(1/α)
. Then,

M−∞(z) ≥ α ·Mp(z) ∀ p ≤ p0.

Proof. Suppose 0 < z1 ≤ . . . ≤ zd, so that M−∞(x) = minj∈[d] zj = z1. Given p ≤ p0,

denote q = −p ≥ ln d
ln(1/α)

. Then, since

Mp(z) =

1

d

∑
j∈[d]

zpj

1/p

=
1(

1
d

∑
j∈[d]

1
zqj

)1/q =
1

1
z1

(
1
d

∑
j∈[d]

(
z1
zj

)q)1/q ,

208



we get
1

Mp(z)
≥ 1

z1

(
1

d
×
(
z1
z1

)q)1/q

=
d1/p

z1
≥ d1/p0

z1
=

α

M−∞(z)
,

implying the result.

Lemma C.3. Given feasible setD with random base objectives h1, . . . , hd : D → R and an

approximation factor α ∈ (0, 1), denote p0 = − ln d
ln(1/α)

. Then, x(0) = argmaxx∈DMp0(h(x))

is an α-approximation for all p ≤ p0. That is,

E[Mp(h(x
(0)))] ≥ max

x∈D
E[Mp(h(x))] ∀ p ≤ p0.

Proof. From Lemma C.2, for all p ≤ p0, we get

E[Mp(h(x
(0)))] ≥ E[M−∞(h(x(0)))] (Lemma C.1)

≥ α · E[Mp0(h(x
(0)))] (Lemma C.2)

= α ·max
x∈D
·E[Mp0(h(x))]

≥ α ·max
x∈D

E[Mp(h(x))]. (Lemma C.1)

The following three lemmas establish guarantees on LineSearch. Denote OPTp =

maxx∈D E[Mp(h(x))] as the maximum value of the p-mean function over D.

Lemma C.4. Suppose LineSearch (Algorithm 8) on input p, α returns b∗ ∈ [p, 1]. Then,

either b∗ = 1, or the policy x := argmaxx′∈DE[Mp(h(x
′))] satisfies

OPTp√
α
≤ OPTb∗ ≤

E[Mb∗(h(x))]

α
.

Proof. If LineSearch on input p, α does not return b∗ = 1, then we must have that
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p-MeanPortfolio enters the while loop (step 3) at least once. In particular,

OPTp = E[Mp(h(x))] < α OPTb∗) <
√
α OPTb∗ .

This proves the first inequality. For the second inequality, notice that the algorithm termi-

nates only when E[Ma(h(x))] ≥ α OPTb∗ . As can be checked, the algorithm maintains

the invariant a ≥ p. Therefore, by Lemma 6.1,

E[Mb∗(h(x))] ≥ E[Ma(h(x))] ≥ α OPTb∗ .

Lemma C.5. Algorithm textttLineSearch maintains the following invariant at all times:

vE[Ma(h(x))] ≥
√
α OPTa.

Proof. Initially, p = a, and therefore x := argmaxx′∈DE[Mp(h(x
′)] satisfies E[Mp(h(x)] =

OPTp ≥
√
α OPTp since α ∈ (0, 1).

Further, the algorithm only updates a← q in step 6 when E[Ma(h(x)] ≥
√
αE[Mq(h(x)].

Since q ≥ a, we get from Lemma 6.1 that E[Mq(h(x)] ≥ E[Mp(h(x)], thus finishing the

proof.

Lemma C.6. Algorithm LineSearch on input p, α returns b∗ > p such that x :=

argmaxx′∈DE[Mp(h(x
′)] is an α-approximation for all q ∈ [p, b∗], i.e., E[Mq(h(x)] ≥

α OPTq for all such q.

Proof. LineSearch starts with a← p and keeps increasing a← q whenever E[Ma(h(x)] ≥
√
α OPTq for q = a+b

2
. In particular, whenever a is increased, we get that for all q′ ∈

[a, (a+ b)/2], from Lemma 6.1,

E[Mq′(h(x)] ≥ E[Ma(h(x)] ≥
√
α OPT(a+b)/2 ≥

√
α OPTq′ > α OPTq′ .

That is, at all times, the algorithm maintains the invariant that π is an α-approximation for

all q′ ∈ [p, a]. Further, the algorithm terminates at b = b∗ when E[Ma(h(x)] ≥ OPTb∗ ,
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i.e., for all q′ ∈ [a, b∗], we get

E[Mq′(h(x)] ≥ E[Ma(h(x)] ≥ α OPTb∗ ≥ α OPTq′ .

The next lemma bounds the slope of the logarithm of the p-mean function and conse-

quently the slope of OPTp:

Lemma C.7. 1. For any z ∈ Rd
>0, such that L ≤ zi ≤ U for all i ∈ [d], define

g(z, p) := lnMp(z) =
1
p
ln
(

1
d

∑
i∈[d] z

p
i

)
. Then, we have for all p ≤ 1 that

dg(z, p)

dp
≤ κ lnκ,

where κ := U
L

.

2. For any given x ∈ D and base functions h1, . . . , hd with condition number κ, we have

d(lnE[Mp(h(x)])

dp
≤ κ lnκ, where κ is the condition number defined in Assumption 6.1.

3. For all distinct p, q ≤ 1,

lnOPTq − lnOPTp

q − p
≤ κ lnκ.

Proof. Part 1. Note that g(βz, p) = ln β + g(z, p) for all z ∈ Rd
>0, p ≤ 1, and β > 0.

Therefore, we can assume without loss of generality that L = 1 and U = U
L
= κ.

That is, assume without loss of generality that 1 ≤ z1 ≤ . . . ≤ zd ≤ κ. Since g(z, p) =

− ln d
p

+ 1
p
ln
(∑

i∈[d] z
p
i

)
, we get that pg(z, p) = − ln d+ ln

(∑
i∈[d] z

p
i

)
. Therefore,

g(z, p) + p
dg(z, p)

dp
=

∑
i(ln zi) · z

p
i∑

i z
p
i

. (C.1)
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Since ln t is concave in t, we get that

pg(z, p) = ln

(
1

d

∑
i

zpi

)
≥ 1

d

∑
i

ln zpi =
p

d

∑
i

ln zi.

Therefore, we get

g(z, p)


≥ 1

d

∑
i ln zi if p ≥ 0,

≤ 1
d

∑
i ln zi if p < 0.

(C.2)

Denote µp =
1
d

∑
i∈[d] z

p
i .

Case A: p ∈ [0, 1]. Plugging this back into Equation C.1, we get

p
dg(z, p)

dp
≤
∑

i(ln zi) · z
p
i

µp × d
− 1

d

∑
i

ln zi =
1

d

(∑
i

ln zi

(
zpi
µp

− 1

))
.

Since 1 ≤ zi ≤ κ for all i, we have 0 ≤ ln zi ≤ lnκ for all i. Further, since zd ≥ zi, we get

that

p
dg(z, p)

dp
≤
∑
i

ln zi

(
zpi
µp

− 1

)
≤ lnκ

∑
i:zpi ≥µp

(
zpd
µp

− 1

)
≤ d lnκ

(
zpd
µp

− 1

)
. (C.3)

Now, since µp is the mean of zpi , i ∈ [d], we must have that µp = θp for some 1 ≤ θ ≤ κ.

Substituting this, we get d · p dg(z,p)
dp
≤ d · (lnκ) ((zd/θ)p − 1). Since zd

θ
≤ κ

1
= κ and the

derivative of αp with respect to α is pαp−1, we get

((zd/θ)
p − 1) ≤ (κp − 1)

=

∫ κ

1

p · αp−1 dα

≤
∫ κ

1

p · 1p−1 dα (since p− 1 ≤ 0 and so αp−1 is nonincreasing in p)

≤ p(κ− 1) ≤ pκ. (since p ≥ 0)
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Plugging this back into Equation C.3, we get

p
dg(z, p)

dp
≤ pκ lnκ,

or that dg(z,p)
dp
≤ κ lnκ for all p ∈ [0, 1].

Case B: p < 0. As before, plugging Equation C.2 into Equation C.1, we get

p
dg(z, p)

dp
≥
∑

i(ln zi) · z
p
i

d× µp

− 1

d

∑
i

ln zi

=
1

d

(∑
i

ln zi

(
zpi
µp

− 1

))
= −1

d

(∑
i

ln zi

(
1− zpi

µp

))
.

That is, since p < 0,

dg(z, p)

dp
≤ 1

(−p)× d

(∑
i

ln zi

(
1− zpi

µp

))
≤ lnκ

(−p)d
∑

i:zpi ≤µp

(
1− zpi

µp

)

≤ lnκ

(−p)d
× d

(
1− zpd

µp

)
=

lnκ

(−p)

(
1− zpd

µp

)
.

Denote −p = q; then q > 0. As before, µp = θp for some 1 ≤ θ ≤ d, and so we have

dg(z, p)

dp
≤ lnκ

q

(
1− θq

zqd

)
≤ lnκ

q

(
1− 1

κq

)
.

For q ≥ 1 (i.e., for p ≤ −1), this is at most lnκ. For q ∈ [0, 1], we will bound this like

Case A:

dg(z, p)

dp
≤ lnκ

q

∫ 1

1/κ

qαq−1 dα

≤ lnκ

∫ 1

1/κ

1

κq−1
dα

≤ (lnκ)× κ1−q ≤ κ lnκ.
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Part 2. Part 1 implies that

κ lnκ ≥ d(lnMp(z))

dp
=

1

Mp(z)
· d(Mp(z))

dp
,

or that d(Mp(z))

dp
≤ (κ lnκ)Mp(z) for all z ∈ [L,U ]d and p ≤ 1.

Given x ∈ D, denote the d-dimensional random variable Z = h(x), then by Assump-

tion 6.1 we have that Z ∈ [L,U ]d always. We prove the result when Z is a discrete random

variable; essentially the same proof holds for continuous random variables. By the above,

we have that

d(lnE[Mp(Z)])

dp
=

1

E[Mp(Z)]
· d(E[Mp(z)])

dp

=
1

E[Mp(Z)]
·
∑
z

Pr(Z = z)
d(E[Mp(z)])

dp

≤ 1

E[Mp(Z)]
·
∑
z

Pr(Z = z) · ((κ lnκ)Mp(z))

= (κ lnκ·)E[Mp(Z)]

E[Mp(z)]
= κ lnκ.

Part 3. Note that lnOPTp = lnmaxx∈D E[Mp(h(x))] = maxx∈D lnE[Mp(h(x))].

Given distinct p, q ≤ 1, denote xp = argmaxx∈DE[Mp(h(x)]. Then, by Part 1,

lnOPTq − lnOPTp

q − p
=

(maxx∈D lnE[Mq(h(x))])− lnE[Mp(h(xp))]

q − p

≤ lnE[Mq(h(xp))]− lnE[Mp(h(xp))]

q − p
≤ κ lnκ.

We are ready to prove Theorem 6.1 that gives guarantees for p-MeanPortfolio

(Algorithm 7).

Proof of Theorem 6.1. We prove that (correctness) the set X of policies output by the al-

gorithm is indeed an α-approximate portfolio, (size bound) |X| = O
(

lnκ
ln(1/α)

)
, and (oracle
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complexity) the number of oracle calls to Equation 6.3 is upper bounded by

O

(
(lnκ)2 ln ln d

ln(1/α) ln ln(1/α)

)
. (C.4)

We note that this size bound can be tightened slightly to O
(

(lnκ)(lnκ+ln ln d)
ln(1/α) ln ln(1/α)

)
; we present

the the above cleaner bound for simplicity.

Correctness. Suppose the algorithm returns portfolio X = {x0, x1, . . . , xK} ⊆ D such

that xt = argmaxx∈DE[Mpt(h(x))] with − ln d
ln(1/α)

= p0 < p1 < . . . < pK = 1.

Lemma C.3 shows that x0 is an α-approximation for all p ≤ p0. It is therefore sufficient

to prove that for all t ∈ [0, K − 1], policy xt is an α-approximation for all p ∈ [pt, pt+1].

Since pt+1 = LineSearch(pt, α), Lemma C.6 implies this.

Size bound. Bby definition, pt+1 = LineSearch(pt, α). Therefore, from Lemma C.4,

we have that xt satisfies OPTpt+1 ≥
OPTpt√

α
for all t except possibly t = K − 1. Therefore,

OPTpK ≥ OPTpK−1
≥
(
1

α

)(K−1)/2

OPTp0 =

(
1

α

)(K−1)/2

OPT−∞.

However, OPTpK ≤ U and OPTp0 ≥ L, so that OPTpK

OPTp0
≤ U

L
= κ, and therefore,

K − 1

2
≤ log(1/α) κ =

lnκ

ln(1/α)
.

Oracle complexity. To bound the oracle complexity, we will show that each run of

LineSearch calls the oracle to solve Equation 6.3 at most O (ln (κ|p0|)) times, where

p0 = − ln d
ln(1/α)

is the first iterate in p-MeanPortfolio and κ = U/L is the condition

number of the rewards. Since LineSearch is called at most O(K) = O
(

lnκ
ln(1/α)

)
times,

this implies the bound Equation C.4.

To bound the number of oracle calls in LineSearch, we will use Lemma C.7.3 that

upper bounds the slope of lnOPTp bym := κ lnκ. Suppose, for a given p ≥ p0 = − ln d
ln(1/α)
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that LineSearch on input p, α finished in j iterations. Then, we have the following for

LineSearch:

1. p0 ≤ p ≤ a < b ≤ 1 at all times, and

2. except in the last iteration, we have E[Ma(h(x))] < α OPTb (otherwise Line

-Search terminates by step 3).

Denote by a(j−1), b(j−1) the value of a, b in iteration j − 1. Then, since b − a is halved in

each iteration, we must have

0 < b(j−1) − a(j−1) = (1− p)2−(j−1) ≤ (1− p0)2−(j−1) ≤ 4 ln d

ln(1/α)
2−j.

However, since the algorithm does not terminate in iteration j − 1, as discussed, we must

also have that

E[Ma(j−1)(h(x))] < α ·OPTb(j−1) . (C.5)

From Lemma C.7, we get that

ln
OPTb(j−1)

OPTa(j−1)

≤ (κ lnκ)(b(j−1) − a(j−1)) ≤ 4κ(lnκ)(ln d)

ln(1/α)
2−j. (C.6)

However, from Lemma C.5, we get E[Ma(j−1)(h(x))] ≥
√
α OPTa(j−1) . Putting these

together with Equation C.5 and Equation C.6, we get that

1

2
ln(1/α) ≤ 4κ(lnκ)(ln d)

ln(1/α)
2−j.

Therefore,

2j ≤ 8κ(lnκ)(ln d)

(ln(1/α))2
.

Equivalently, the number of iterations j in LineSearch is bounded by

O

(
ln

(
κ ln d

ln(1/α)

))
= O

(
(lnκ)(ln ln d)

ln ln(1/α)

)
.
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APPENDIX D

ADDITIONAL EXPERIMENTAL DETAILS FROM Chapter 6

D.1 Comparison with other MORL Algorithms

[126] optimize a generalized Gini welfare assuming a fixed weight vector. We address a

fundamentally different scenario, where decision-makers are uncertain about the appropri-

ate fairness criterion (e.g., the choice of p in p-means or the selection of weights in Gini

welfare) in advance. Optimizing a single policy for one fairness parameter can lead to poor

outcomes under different criteria (see the approximation qualities of random baselines in

our experiments). Our method computes a small, representative set of policies covering the

entire spectrum of fairness criteria. This allows decision-makers to select confidently from

this set, without worrying about suboptimality under other potential choices of p.

[148] focuses on weighted linear objectives and learns a single policy, whereas we focus

on p-means and compute a portfolio (multiple policies). [149] builds portfolios focusing

on weighted linear objectives (as opposed to p-means) and does not offer guarantees on

portfolio size or oracle complexity. [150] trains a single policy to approximate the Pareto

frontier, which does not directly correspond to any social welfare function. To the best

of our knowledge, our work is the first to (1) propose a multi-policy approach in p-means

and (2) provide theoretical guarantees on portfolio size, approximation quality, and oracle

complexity simultaneously.

In Table D.1, we also present comparisons between p-MeanPortfolio and the Gen-

eralized Policy Improvement (GPI) algorithm of [149], which maintains a set of policies

Π′ ⊆ Π and iteratively chooses the weight vector w with the highest difference between the

optimal policy value for w in Π vs in Π′. Our implementation of GPI uses the differential

evolution solver from scipy for this global optimization step. The results in the table indi-
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Table D.1: A comparison of actual approximation ratios across various portfolio sizes for
p-MeanPortfolio and our implementation of GPI.

Portfolio
Size

p-Mean-
Portfolio

GPI

Resource Allocation after Natural Disaster
1 0.706 0.514
2 0.904 0.520
3 0.999 0.520
4 0.100 0.520

Healthcare Intervention
1 0.924 0.347
2 0.982 0.641
3 0.982 0.641
4 0.982 0.641
5 0.993 0.641
6 0.999 0.641
7 1.000 0.641

cate that our approach achieves significantly better approximation quality. We omit other

details of GPI here and refer the interested reader to [149].

D.2 Additional Experimental Results

Figure D.1 and Figure D.2 illustrate how the optimal policies for different p values in the

portfolio lead to varying impacts for the stakeholders. These portfolios are all obtained us-

ing p-MeanPortfolio. We also include the values of p chosen by p-MeanPortfolio

to construct the portfolio in Table D.2.

D.3 Experimental Details

We include the details of various experiments here.

D.3.1 Taxi Environment

Problem Setting. This environment consists of a taxi agent whose task is to deliver pas-

sengers from source to destination. The world consists of a 6x6 grid and based on the en-
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Table D.2: The set of values of p chosen by p-MeanPortfolio to obtain the correspond-
ing portfolios.

Portfolio
size p Values

Resource Allocation After Natural Disaster
1 -0.829
2 -4.864, -0.466
3 -11.136, -2.034, 0.621
4 -23.58, -5.15, -0.537, 0.712

Healthcare Intervention
1 -1.325
2 -2.864, 0.034
3 -4.333, -0.333, 0.333
4 -6.641, -0.433, -0.075, 0.463
5 -9.216, -4.108, -0.437, -0.078, 0.461
6 -13.801, -6.4, -0.594, -0.22, 0.085, 0.542
7 -17.793, -3.698, -0.549, -0.186, -0.038, 0.222, 0.611

Taxi Environment
1 -2.0
2 -3.89, 0.87
3 -6.21, 0.72, 0.86
8 -13.16, -10.06, -6.17, -4.82, 0.66, 0.7, 0.77, 0.89
10 -27.03, -13.02, -6.25, 0.66, 0.71, 0.78, 0.81, 0.86, 0.89, 0.95

Figure D.1: Normalized total reward for each route under different policies in the portfolio
generated by p-MeanPortfolio in the taxi environment.
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Figure D.2: Fraction of need met for various clusters by various policies in the portfolio
obtained by p-MeanPortfolio after H = 4 intervention steps for the natural disaster
experiment. Note that different solutions in the portfolio emphasize different clusters.
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vironment setup of [41], we consider 4 source-destination pairs. Whenever a taxi moves to

a source point, it can pick a passenger, move to destination and drop the passenger, thus re-

ceiving a reward. Since some routes could be easier to serve, the agent has to decide which

route to serve more often. Rewards are multi-dimensional, each dimension correspond-

ing to each route. We consider the following source-destination pairs: source coordinates

= ((0, 0), (0, 5), (3, 0), (1, 0)) and destination coordinates = ((1, 5), (5, 0), (3, 3), (0, 3)).

MDP Structure.

State Space (S)

The state space consists of information about the location of the taxi, the location of pas-

sengers, and whether passengers have been picked up by the taxi at the moment.

Action Space (S)

The agent can take one of 6 actions: move north, south, east, west and pick or drop a

passenger in the current grid cell.

Reward (R)

The reward function gives a reward of 0 for moving, -10 reward for taking an invalid action

of picking or dropping a passenger at the wrong coordinate, and reward 30 reward for

dropping a passenger at the right destination.

Learning Policy

Given a scalarization function (or welfare function ), the task is to find a policy π∗ that

maximizined the expected value of scalarized return. Specifically:

π∗ = argmax
π

Eτ∼π

[
Mp

(
G(τ)

)]
. (D.1)
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We learn this policy using the Welfare Q-Learning algorithm proposed in [41]. For

every problem setting, we train the policy for 200 episodes. Every episode is a finite-

horizon problem with 1000 timesteps. We consider the discount factor γ = 0.99.

D.3.2 Natural Disaster

Problem Setting. In this synthetically generated example, suppose that in the wake of a

natural disaster, a centralized aid agency must determine how to allocate resources to a set

of 12 clusters (d = 12). Each cluster is characterized by their population density (high or

low), proximity to critical infrastructure (near or far), and the predominant income level of

its residents (low, middle, or high).

Table D.3: Clustered population data including density, proximity, income level, total pop-
ulation, and initial need.

Cluster ID Density Proximity Income Level Total Population Initial Need
1 High Far High-Income 148 150
2 High Far Low-Income 307 500
3 High Far Middle-Income 616 650
4 High Near High-Income 816 300
5 High Near Low-Income 1405 1000
6 High Near Middle-Income 2782 950
7 Low Far High-Income 74 1000
8 Low Far Low-Income 203 350
9 Low Far Middle-Income 396 300

10 Low Near High-Income 36 50
11 Low Near Low-Income 113 100
12 Low Near Middle-Income 230 100

MDP Formulation and Experimental Protocol. We model post–disaster resource allo-

cation to d = 12 clusters as a finite-horizon MDP. LetH denote the time horizon. Through-

out, we use k for the allocation increment and K for the per-period budget (these corre-

spond to b and B in the informal description above). All needs and allocations lie on the

k-grid.
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State space. At time t, the state is st = (st,1, . . . , st,d) ∈ Zd
≥0, where st,i is the unmet

need of cluster i (in units of k). We initialize s0 from Table D.3. Feasible states are

those reachable by repeatedly (i) subtracting allocated units and (ii) possibly increasing

one unattended cluster by k (see transitions below).

Action space. An action is an allocation vector at = (at,1, . . . , at,d) with at,i ∈ {0, k, 2k,

. . . , K} and a per-period budget constraint
∑d

i=1 at,i ≤ K. We impose a validity con-

straint:

if st,i = 0 ⇒ at,i = 0,

i.e., we never allocate to a cluster whose need is already zero. In implementation, we

enumerate the full feasible action space A = {a :
∑

i ai ≤ K} and then state-filter to

A(st) = {a ∈ A : st,i = 0⇒ ai = 0}.

Transitions. Given st and at, define the interim post-allocation state

xt,i = max{0, st,i − at,i}, xt = (xt,1, . . . , xt,d).

Let Ut = { i : xt,i > 0 and at,i = 0 } be the set of unattended clusters that still have unmet

need. With probability p no spillover occurs and st+1 = xt. With probability 1− p, exactly

one unattended cluster j ∈ Ut is chosen uniformly and its need increases by k:

st+1,i =


xt,i + k, i = j,

xt,i, i ̸= j.

The rationale behind this model behavior is that if need remains unmet, there can possibly

be an increase in need over time. For example, lack of resources might lead to an increase

in need for medical care, which will compound the total resources needed in the next time

period. If Ut = ∅, then st+1 = xt deterministically.
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Policy menu. We evaluate “reasonable” structured policies that map a state s to a valid

action a ∈ A(s) using the following priorities:

1. Need-based: allocate all K to argmaxi si.

2. Per-capita need: allocate all K to argmaxi si/popi.

3. Population: allocate all K to argmaxi popi.

4. Income-priority: prioritize Low ≻Middle ≻ High income (breaking ties by higher

si) and allocate all K to the first in this order.

5. Proximity-priority: prioritize Near ≻ Far (ties by higher si) and allocate all K

accordingly.

6. Randomized weighted hybrid (implemented). Sample weights wneed, wpc, winc,

wprox ∼ Unif(0, 1) and normalize to sum to one; score each cluster

scorei = wneed si + wpc
si

popi

+ winc·1{incomei = Low} + wprox·1{proxi = Near}.

Let i⋆ ∈ argmaxi scorei. If si⋆ ≥ K, allocate ai⋆ = K. Otherwise allocate ai⋆ = k

and allocate the remaining k (if available) to a uniformly random other cluster with

si > 0; all other coordinates are 0. (Allocations are always in increments of k.)

In our simulation, when a state is first encountered we sample one policy from this

menu and fix it for that state for the remainder of the rollout. This produces a state–action

map that varies across reachable states without solving a global control problem.

Reward and optional allocation bonus. Let need0
i be cluster i’s initial need. For a

transition s→ s′ the per-cluster reward is

ri(s, a, s
′) =

(
ai
HK

)
· (1 + βi).
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The optional global equity multiplier βi ≥ 0 enables global constraints/bonuses:

βi = ω 1{i ∈ C}︸ ︷︷ ︸
cluster set bonus

+ , βi ← min{βi, βmax},

where ω is a user-set weight, C a designated set of clusters to prioritize (e.g., {2}), and βmax

an optional cap. Setting ω = 0 recovers the unmodified reward.

Expected returns, allocations, and what we report. Given (s, a), we enumerate all

feasible s′ and their probabilities, and compute per-cluster expected rewards

E[ ri(s, a, s′) ] =
∑
s′

P (s′|s, a) ri(s, a, s′).

Over the horizon we accumulate (i) the expected cumulative rewardRi =
∑H−1

t=0 Pr(reach st)

E[ri(st, at, St+1)] and (ii) the expected total allocationAi =
∑H−1

t=0 Pr(reach st)E[at,i]. We

report both Ri and Ai for each cluster.1

Rollout and tractability. We avoid Monte Carlo sampling by enumerating next states but

retain only those with probability > ε (default ε = 10−6). Newly reached states are added

to a frontier with their path probability; we prevent revisiting already-expanded states to

keep the graph acyclic in practice. This yields a sparse, tree-like expansion that preserves

essentially all probability mass while remaining tractable even with a large discrete action

space A (whose size scales as O((K/k + 1)N)).

Parameterization. Unless otherwise noted, we use the k-grid and budget specified in the

problem setting (e.g., k = 50, K = 150), a spillover parameter p ∈ (0, 1) controlling

unattended-need inflation, and a finite horizon H .
1In code, both are computed by weighting each step’s contributions by the path probability mass.
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D.3.3 Healthcare Intervention

The Healthcare Intervention problem is based on the large-scale mobile-health program

run by the NGO ARMMAN [22]. The goal of the program is to maximize engagement

of beneficiaries with the program using limited service call interventions. Based on pre-

vious works, we model this problem as RMAB problem where we have multiple arms or

beneficiaries, a budget on the number of service calls to give every week. For every benefi-

ciary, we have information on their listenership with the voice call. This is considered as an

engaging or non-engaging state if the listenership is above or below 30-seconds threshold

respectively. One week of time is considered as one timestep. Finally, every week, the

action can be to place (active) or not to place a live service call (passive). Additionally,

for every beneficiary, we have information on their socio-demographic characteristics such

as age, income, education. We use real world data from service quality improvement con-

ducted by ARMMAN in January 2022 [151]. Further, for our experiments, we sample data

for 2100 beneficiaries, and run the experiment for H = 12 timesteps.

Generation of Policies and Reward Functions. The default reward incentivizes agents

to be in engaging state. Thus, agents receive reward 1 if they are in engaging state, and 0

otherwise. However, due to varying policy needs over time or over different geographies,

health workers often have to prioritize some beneficiaries more than others. To capture

these varying priorities, we leverage the Social Choice Language Model framework [40] to

derive reward functions from natural-language commands. Given a command specifying

d preferences (each indicating a subgroup to prioritize) this method generates two sets of

reward functions:

1. Individual preferences: one reward function per preference (total of d reward func-

tions) which we treat as each stakeholder’s reward function.

2. Balancing functions: a collection of reward functions that trade off among the d
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preferences, whose corresponding policies form our feasible set Π.

In our experiments, we set d = 59 and construct |Π| = 200 balancing policies.

Learning Policy. It is computationally intractable to optimally solve the RMAB problem

[81]. Thus, we use the commonly used Whittle Index Heuristic [132] to solve RMAB prob-

lem for a given single reward function. Specifically, Whittle Index quantifies the reward

gain achieved for every arm in every state if we took the active action as compared to if we

took the passive action. The policy then chooses the arms with the highest Whittle indices

within the budget limit.

Baseline Policy. The baseline policy mentioned in Figure Figure 1.2 is trained on the

default reward.

D.3.4 Other Details

Initial p for BudgetConstrainedPortfolio. We fix p0 = −100.

Computing actual approximation factor. The approximation factorQ(Π′) for any port-

folio Π′ is computed via a grid search over 1000 points in [∞, 1] for the natural disaster

environment and the healthcare intervention problem. For the taxi environment, we used

50 points due to the computational burden of solving each problem.

Choice of α. For a given portfolio size K, we chose the smallest α in the set {0.05, 0.10,

. . . , 0.90, 0.95} ∪ {0.99} that has the resulting portfolio size K.
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APPENDIX E

OMITTED PROOFS FROM Chapter 7

We provide proofs omitted from Chapter 7 here.

E.1 Omitted Proofs from Subsection 7.3.1

To prove Lemma 7.1, we need the following concentration inequality:

Lemma E.1 (Bernstein inequality [152], Theorem 2). Let X1, . . . , XN be negatively asso-

ciated zero-mean random variables with |Xi| ≤ 1 for all i ∈ [N ] with probability 1. Let

z1, . . . , zN be nonnegative constants. Then, for all δ > 0,

Pr

∑
i∈[N ]

ziXi ≥ δ

 ≤ exp

(
− 3δ2

2δmaxi∈[N ] zi + 6
∑

i∈[N ] z
2
iE[X2

i ]

)
.

We prove the Lemma 7.1 now, which bounds the dual block norms of sparse vectors:

Lemma 7.1. Consider a vector c ∈ {0, 1}d that is S-sparse, i.e., ∥c∥1 ≤ S, and a block

norm ∥ · ∥[n] induced by a random equal n-partition of [d]. Then the expected square of the

dual norm E
[(
∥c∥∗[n]

)2]
is bounded above by

E
[(
∥c∥∗[n]

)2] ≤ 6max

{
S

n
, lnn

}
.

Proof. Recall that given blocks B1, . . . , Bn that partition [d], the dual block norm of c is

maxj∈[n] ∥cBj
∥2, where cBj

is the restriction of c to the coordinates in block Bj . Suppose

blocks Bj, j ∈ [n] are chosen randomly and are of equal size.

Fix some block j ∈ [n]. For i ∈ [S], let Yi denote the indicator random variable for

whether the ith non-zero coordinate in c lies inBj . Note that E
[
∥cBj
∥1
]
= E

[∑
i∈[S] Yi

]
=
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S
n

. Also note that random variables {Yi, i ∈ [S]} are negatively associated (see [153]). Let

Xi = Yi − 1
n

; then E[Xi] = 0 for each i and the random variables {Xi, i ∈ [S]} are also

negatively associated (again follows from [153]).

Setting zi = 1 for all i in Lemma E.1, we get that for all δ > 0

Pr

(
∥cBj
∥1 ≥

S

n
+ δ

)
= Pr

∑
i∈[S]

Yi ≥
S

n
+ δ

 = Pr

∑
i∈[S]

Xi ≥ δ


≤ exp

(
− 3δ2

2δ + 6
∑

i∈[S] E[X2
i ]

)

= exp

(
− 3δ2

2δ + 6S(1−1/n)
n

)
< exp

(
− 3δ2

2δ + 6S
n

)
.

Choose δ = max
(
4 lnn, 4

√
S lnn
n

)
. When S ≤ n lnn, we get

exp

(
− 3δ2

2δ + 6S
n

)
≤ exp

(
− 48 ln2 n

8 lnn+ 6 lnn

)
≤ 1

n2
.

When S > n lnn, we get that
√

S lnn
n
≤ S

n
, so that

exp

(
− 3δ2

2δ + 6S
n

)
≤ exp

− 48S lnn
n

8
√

S lnn
n

+ 6S
n

 ≤ exp

(
−

48S lnn
n

14S
n

)
≤ 1

n2
.

In either case,

Pr

(
∥cBj
∥1 ≥

S

n
+ δ

)
≤ 1

n2
.

By taking a union bound over the n blocks j = 1, . . . , n,

Pr

(
max
j∈[n]
∥cBj
∥1 ≥

S

n
+ δ

)
≤ 1

n
. (E.1)

Since c ∈ {0, 1}d, ∥cBj
∥22 = ∥cBj

∥1 for all j, and therefore, the expectation of the square
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of dual block norm of c is

E
[
max
j∈[n]
∥cBj
∥22
]
= E

[
max
j∈[n]
∥cBj
∥1
]
.

From Equation E.1, and since maxj∈[n] ∥cBj
∥1 ≤ S always, we get that

E
[
max
j∈[n]
∥cBj
∥22
]
≤
(
1− 1

n

)(
S

n
+ δ

)
+

1

n
S

≤ 2S

n
+ 4max

(
lnn,

√
S lnn

n

)

≤ 6max

(
S

n
, lnn,

√
S lnn

n

)
.

Finally, note that
√

S lnn
n

=
√

S
n

√
lnn ≤ max

(
S
n
, lnn

)
.

E.2 Proof of Lemma 7.2

We prove Lemma 7.2 now, which bounds Dn for block norms over the probability simplex.

Proof of Lemma 7.2. Denote z = x(1), First, we compute the gradient ∇hn(z). For coor-

dinate i that lies in block Bj , we have

∇ihn(z) =
1

γnpn
× pn∥zBj

∥pn−1
2 × 1

2∥zBj
∥2
× 2zi =

1

γn
∥zBj
∥pn−2
2 zi.

Therefore,

⟨∇hn(z), z⟩ =
∑
j∈[n]

∥zBj
∥pn−2
2

∑
i∈Bj

(zi · zi) = pnhn(z).

Consequently,

γnBhn(x∥z) = γnhn(x)− γnhn(z)− γn⟨∇hn(z), x− z⟩
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= (pn − 1)γnhn(z) + γnhn(x)− γn⟨∇hn(z), x⟩.

However, since x, z ∈ ∆d, we have ⟨∇hn(z), x⟩ ≥ 0 (since each term is nonnegative).

Further, since 1 ≤ pn ≤ 2, we have that

γnhn(x) =
1

pn

∑
j∈[n]

∥xBj
∥pn2 ≤

1

pn

∑
j∈[n]

∥xBj
∥2 ≤

1

pn

∑
j∈[n]

∥xBj
∥1 =

1

pn
.

Similarly, γnhn(z) ≤ 1
pn

. Therefore,

γnBhn(x∥z) ≤ (pn − 1)γnhn(z) + γnhn(x) ≤
pn − 1

pn
+

1

pn
= 1.

E.3 Omitted Proofs from Subsection 7.3.3

We prove Lemma 7.3 and Lemma 7.4 here.

E.3.1 Proof of Lemma 7.3

Similar to the proof of Lemma 7.2, we get that

γSBhS
(z∥x(1)) ≤ γShS(z) + (pS − 1) γShS(x

(1)) ≤ pSγS max
x∈P

hS(x).

Therefore, BhS
(z∥x(1)) ≤ (pSγS maxx∈P hS(x)) · O(ln d) since γS = 1

e lnS
. Therefore, it

is sufficient to prove that maxx∈P hS(x) ≤ 1
pSγS

.

Since hS is convex, the maximum occurs at some vertex of P . For each i ∈ [d],

hS(ei) =
1

pSγS
. For the remaining vertex x(1) = A1d, we have (given blocks B1, . . . , BS):

pSγShS(x
(1)) =

∑
j∈[S]

∥xBj
∥pS2 =

∑
j∈[S]

ApS

(
d

S

) pS
2

= SApS

(
d

S

) pS
2

= (A2dS)pS/2 · S1−pS .
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Since A = d−2/3, S = d1/3 and pS ≥ 1, we have that (A2dS)pS/2 · S1−pS ≤ 1. This

completes the proof.

E.3.2 Proof of Lemma 7.4

We restate the lemma here for convenience.

Lemma 7.4. The iterates z(1), . . . , z(T ) ∈ P̂ of OMD with dth block norm satisfy with high

probability

z
(t)
1 ≤

1

d
+

√
K

R
√
R
(t− 1),

where K = 128
T

ln2(dT ).

Recall our plan for the proof: we will show that for consecutive iterates z(t), z(t+1)

played by the algorithm, the Bregman divergence Bhd
(z(t+1)∥z(t)) is sandwiched between

1

2
∥z(t) − z(t+1)∥21 ≤ Bhd

(z(t+1)∥z(t)) ≤ K

2R
. (E.2)

Proof of Lemma 7.4 assuming Equation E.2. First, we prove that this L1 norm bound

implies the desired coordinate-wise bound, and then return to the proof of this inequality.

Recall that scaled polytope P̂ = conv( 1
R
e1, . . . ,

1
R
ed,

1
d
1d) for R = d1/3.

Lemma E.2. Consider a sequence of points {z(t)}t≥1 in P̂ such that z(1) = 1
d
1d and

∥z(t+1) − z(t)∥21 ≤ B for some B > 0. Then these points satisfy

z
(t)
1 ≤

1

d
+

√
B

R
(t− 1).

Proof. Denote v = 1
R
e1. Let γ =

v1−z
(1)
1

∥v−z(1)∥1
=

1
R
− 1

d

1+ 1
R
− 2

d

. Define

g(z) = z1 − z(1)1 − γ∥z − z(1)∥1.

We will show that g(z) ≤ 0 for all z ∈ P̂ , so that we have z1 − z(1)1 ≤ γ∥z − z(1)∥1. In
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particular,

z
(t)
1 − z

(1)
1 ≤ γ∥z(t) − z(1)∥1 ≤ γ

t−1∑
t′=1

∥z(t′+1) − z(t′)∥1 ≤ γ(t− 1)
√
B.

The result follows by noting that γ =
1
R
− 1

d

1+ 1
R
− 2

d

≤ 1
R

for all R ≥ 2.

It remains to show that g(z) ≤ 0 for z ∈ P̂ . Denote v(i) = 1
R
ei, and write z − z(1) =∑

i∈[d] λi(v
(i) − z(1)) where each λi ≥ 0 and

∑
i∈[d] λi := ϕ ≤ 1. Then z1 − z(1)1 = λ1

R
− ϕ

d
.

Further,

∥z − z(1)∥1 =
∥∥∥∥(λ1R − ϕ

d
, . . . ,

λd
R
− ϕ

d

)∥∥∥∥
1

=
d∑

i=1

∣∣∣∣λiR − ϕ

d

∣∣∣∣ ≥ (λ1R − ϕ

d

)
+

∣∣∣∣∣
d∑

i=2

(
λi
R
− ϕ

d

)∣∣∣∣∣
=

(
λ1
R
− ϕ

d

)
+

∣∣∣∣ϕ− λ1R
− (d− 1)

d
ϕ

∣∣∣∣
≥
(
λ1
R
− ϕ

d

)
−
(
ϕ− λ1
R

− (d− 1)

d
ϕ

)
=

2

R
λ1 +

(
1− 2

d
− 1

R

)
ϕ.

Therefore,

g(z) = z1 − z(t)1 − γ∥z − z(t)∥1

≤
(
λ1
R
− ϕ

d

)
− γ

(
2

R
λ1 +

(
1− 2

d
− 1

R

)
ϕ

)
= λ1

(
1− 2γ

R

)
− ϕ

(
1

d
+ γ

(
1− 2

d
− 1

R

))
.

Since γ ≤ 1
R
≤ 1

2
and λ1 ≤ ϕ, the above is bounded above by

g(z) ≤ ϕ

(
1− 2γ

R

)
− ϕ

(
1

d
+ γ

(
1− 2

d
− 1

R

))
= ϕ

(
1

R
− 1

d
− γ

(
1− 2

d
+

1

R

))
= ϕ

(
1

R
− 1

d
−
(
1

R
− 1

d

))
= 0.
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Proof of Lemma 7.4. From Equation E.2, the iterates z(t) of OMD with dth block norm

satisfy the conditions of Lemma E.2 withB = K
R

. The result then follows immediately.

Proof of Equation E.2. The lower bound in Equation E.2 follows from Theorem 7.1,

since Bhd
is 1-strongly convex with respect to the L1 norm in th L1 norm ball, and P̂ is

contained in the L1 norm ball. The upper bound is more involved and uses the structure of

loss functions and the polytope.

Specifically, suppose y(t) denotes the intermediate point between iterates z(t) and z(t+1)

in Algorithm 10 (i.e., z(t+1) is the minimizer of Bhd
(z∥y(t))). Therefore, using the general-

ized Pythagorean theorem for Bregman divergences,

Bhd
(z(t+1)∥z(t)) ≤ Bhd

(z(t+1)∥y(t)) +Bhd
(z(t)∥y(t)) ≤ 2Bhd

(z(t)∥y(t)).

Therefore, it is sufficient to upper bound Bhd
(z(t)∥y(t)). However, given z(t), we can ex-

plicitly compute y(t) as a function of z(t), dimension d, and the step size η. This is done

in Equation E.3 below. Then, we prove the desired upper bound Bhd
(z(t)∥y(t)) ≤ K

4R
in

Corollary E.1.

First, let us compute the step size η of OMD with dth block norm. Recall that P =

conv(∆d, A1d), and the scaled polytope P̂ = 1
Ad
P . Recall also that we denote the rescaling

parameter R = Ad = d1/3 and the scaled starting point z(1) = 1
R
(A1d) =

1
d
1d. Similar to

the proof of Lemma 7.3 above, the diameter D̂d of P̂ is bounded above by
√

1
γd

=
√
e ln d.

Next, Ĝd := maxx∈K,t∈[T ] ∥∇f̂ (t)(x)∥∞ = R. Therefore, the step size

η ≤ D̂d

Ĝd

√
T
≤
√
e ln d

R
√
T
.

Next, we derive an explicit expression for the (unconstrained) update rule for OMD with
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dth block norm. Given iterate z ∈ Rd
≥0 and some set C ⊆ [d] of coordinates, define

yi =


(
z

1
ln d
i + ηR

e ln d

)ln d

if i ∈ C,

zi if i ̸∈ C.
(E.3)

Recall that the scaled loss function f̂ (t)(z) = −R⟨c(t), z⟩, where c(t) is 0-1 vector with

exactly S non-zero coordinates, defined as follows: c(t)1 = 1 always, and the remaining

S − 1 non-zero coordinates of c(t) are chosen uniformly at random from the remaining

d − 1 coordinates. Denote by C(t) = {i ∈ [d] : c
(t)
i = 1} the non-zero coordinates of

c(t). To obtain the update rule, recall that hd(x) = 1
γdpd

∑
i∈[d] x

pd
i , where pd = 1 + 1

ln d
and

γd = 1
e ln d

. The algorithm moves from some iterate z(t) to point y(t) and then to z(t+1) :=

argminz∈P̂Bhd
(z∥y(t)). Then, it can be verified through a straightforward calculation using

Algorithm 10 that the update rule is given precisely by the above Equation E.3 when C =

C(t), z = z(t), and y = y(t). For convenience, we denote

η0 = ηR ≤
√
e ln d

T
.

Note that since hd(y) = e ln d
1+ 1

ln d

∑
i∈[d] y

1+ 1
ln d

i , we have ∇h(y) = (e ln d)y1/ ln d. Thus,

Bhd
(z∥y) = hd(z)− hd(y)− ⟨∇hd(y), z − y⟩

=
e ln d

1 + 1
ln d

∑
i∈[d]

(
z
1+ 1

ln d
i − y1+

1
ln d

i

)
+ e ln d

∑
i∈[d]

(yi − zi)y
1

ln d
i .

The rest of the plan is as follows: given z and y as defined in Equation E.3, Lemma E.3

bounds the coordinate-wise components of Bhd
(z∥y), and Lemma E.4 bounds Bhd

(z∥y) in

terms of z. Corollary E.1 gives the final desired bound in Equation E.2, using a concentra-

tion bound from Lemma E.5.
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Lemma E.3. For any z ∈ R≥0 and y defined in Equation E.3, for all i ∈ [d],

e ln d

1 + 1
ln d

(
z
1+ 1

ln d
i − y1+

1
ln d

i

)
+ e ln d(yi − zi)y

1
ln d
i ≤ η20

2e
y
1− 1

ln d
i .

Proof. Denote the left-hand side by λ. Denote a = z
1

ln d
i and δ = η0

e ln d
. Then y

1
ln d
i = a+ δ.

Then

λ

e ln d
=

1

1 + 1
ln d

(
a1+ln d − (a+ δ)1+ln d

)
+ ((a+ δ)ln d − aln d)(a+ δ)

=
a1+ln d

1 + ln d

((
1 +

δ

a

)1+ln d

− (1 + ln d)

(
1 +

δ

a

)
+ ln d

)

=
a1+ln d

1 + ln d
· 1 + ln d

a

∫ δ

0

((
1 +

µ

a

)ln d

− 1

)
dµ

≤ aln d

∫ δ

0

(ln d)
µ

a

(
1 +

µ

a

)−1+ln d

dµ.

The last inequality holds since (1 + u)p ≤ pu(1 + x)p−1 ∀ p ≥ 1, u ≥ 0. Further,

aln d

∫ δ

0

(ln d)
µ

a

(
1 +

µ

a

)−1+ln d

dµ

≤(ln d)a−1+ln d

(
1 +

δ

a

)−1+ln d ∫ δ

0

µ dµ

=
(ln d)δ2(a+ δ)−1+ln d

2
.

Therefore,

λ ≤ e(ln d)2δ2(a+ d)−1+ln d

2
=
η20
2e
y
1− 1

ln d
i .

Lemma E.4. Consider z ∈ Rd
≥0 with

∑
i∈C zi ≥

1
d2

and y as defined in Equation E.3. If

η0 ≤ 1
2e2

, then

Bhd
(z∥y) ≤ 2η20

∑
i∈C

zi.
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Proof.

Bhd
(z∥y) = e ln d

1 + 1
ln d

∑
i∈[d]

(
z
1+ 1

ln d
i − y1+

1
ln d

i

)
+ e ln d

∑
i∈[d]

(yi − zi)y
1

ln d
i .

The terms corresponding to i ̸∈ C cancel out. By Lemma E.3 therefore,

Bhd
(z∥y) ≤ η20

2e

∑
i∈C

yi.

Partition C = L∪(C\L), where L = {i ∈ C : zi ≥ 1
d3
} is the set of all ‘large’ coordinates.

For all i ∈ L,

y
1− 1

ln d
i = zi

(
1 +

η0

ez
1/ ln d
i ln d

)ln d−1

≤ zi exp

(
η0

ez
1/ ln d
i

)
(1 + u ≤ exp(u))

≤ zi exp
(
η0e

2
)

(zi ≥ 1/d3)

≤ zi
(
1 + 2η0e

2
)
≤ 2zi. (η0 ≤ 1/2e2)

Thus,
∑

i∈L y
1− 1

ln d
i ≤ 2

∑
i∈C zi. We now add those i ∈ C \ L:

∑
i∈C\L

y
1− 1

ln d
i =

∑
i∈C\L

(
z

1
ln d
i +

η0
e ln d

)ln d−1

≤
∑
i∈C\L

(
1

e3
+

η0
e ln d

)ln d−1

(zi ≤ d3)

=
∑
i∈C\L

e

d3

(
1 +

e2η0
ln d

)ln d−1

(zi ≤ d3)

≤
∑
i∈C\L

e

d3
exp

(
η0e

2
)

≤ d× e

d3
× (1 + 2η0e

2) ≤ 2e
∑
i∈C

zi.
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Therefore, we have

Bhd
(z∥y) ≤ η20

2e
× 4e

∑
i∈C

zi ≤ 2η20
∑
i∈C

zi.

Since C is a randomly chosen set of coordinates for iterates of the algorithm,
∑

i∈C zi

is a random quantity. Our next lemma establishes concentration on
∑

i∈C zi:

Lemma E.5. Given dimension d > 0 and positive integer S ≤ d, consider a random set

C ⊆ [d] with |C| = S defined as follows: with probability 1, we have 1 ∈ C and the

other S−1 elements of C are chosen uniformly at random from among the remaining d−1

coordinates. Given z ∈ Rd
≥0 such that ∥z∥∞ = z1, consider random variable U =

∑
i∈C zi.

Then, for all β ≥ e,

Pr

(
U ≥ (4 ln β)max

{
z1,

S

d
∥z∥1

})
≤ 1

β
.

Proof. Denote C ′ = C \ {1} and U ′ =
∑

i∈C′ zi so that U = z1 + Û . For i ∈ [2, d],

define the indicator random variable X ′
i for whether i ∈ C. Then Û =

∑d
i=2X

′
izi and

EX ′
i =

S−1
d−1

. Therefore, EÛ = S−1
d−1

∑d
i=2 zi.

Define Xi = X ′
i − S−1

d−1
. Then (1) EXi = 0, (2) Û − EÛ =

∑d
i=2Xizi, (3) |Xi| ≤

1− S−1
d−1
≤ 1, and (4) E[X2

i ] =
S−1
d−1

(
1− S−1

d−1

)
≤ S−1

d−1
. Theorefore, by Lemma E.1,

Pr
(
Û − EÛ ≥ δ

)
= Pr

(
d∑

i=2

ziXi ≥ δ

)

≤ exp

(
− 3δ2

2δmaxi∈[2,d] zi + 6
∑d

i=2 z
2
iE[X2

i ]

)

≤ exp

(
− 3δ2

2δmaxi∈[2,d] zi +
6(S−1)
d−1

∑d
i=2 z

2
i

) (
E[X2

i ] ≤
S − 1

d− 1

)

≤ exp

(
− 3δ2

2δmaxi∈[2,d] zi +
6(S−1)
d−1

(
maxi∈[2,d] zi

)∑d
i=2 zi

)

≤ exp

(
− 3δ2

2δz1 + 6z1EU ′

)
(∥z∥∞ = z1)
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≤ exp

(
− 3δ2

2max{2δz1, 6z1EU ′}

)
= exp

(
−min

{
3δ

4z1
,

δ2

4z1EU ′

})
.

Choose δ = (2 ln β)max {z1,EU ′} ≥ (2 ln β)max
{
z1,
√
z1EU ′

}
. Then min

{
3δ
4z1
, δ2

4z1EU ′

}
≥

min
{

3
2
ln β, ln β

}
= ln β. Therefore,

Pr
(
Û − EÛ ≥ δ

)
≤ exp

(
−min

{
3δ

4z1
,

δ2

4z1EU ′

})
≤ exp(− ln β) =

1

β
.

Consequently,

Pr(U ≥ z1 + EU ′ + (2 ln β)max {z1,EU ′}) ≤ 1

β
.

However, since β ≥ e, we have z1+EU ′+(2 ln β)max {z1,EU ′} ≤ (4 ln β)max {z1,EU ′}.

Since EU ′ = S−1
d−1

∑d
i=2 zi ≤

S
d

∑d
i=2 zi ≤

S
d
∥z∥1, we get the result.

We get the following result as a corollary, which also proves that Equation E.2 is true

with high probability:

Corollary E.1. Consider an iterate z(t) ∈ P̂ of OMD with dth block norm and uncon-

strained update point y(t) as defined in Equation E.3. Then, with probability ≥ 1− 1
dT

,

Bhd
(z(t)∥y(t)) ≤ 8η20 ln(dT )max

{
z1,

S

d
∥z∥1

}
.

In particular, with probability ≥ 1 − 1
d
, for any iterate z(t) ∈ P̂ of OMD with dth block

norm, we have

Bhd
(z(t)∥y(t)) ≤ K

4R
.

Proof. (First part) First, we show that the conditions of Lemma E.4 are met for z = z(t),

so that Bhd
(z(t)∥y(t)) ≤ 2η20

∑
i∈C(t) z

(t)
i .

By symmetry, the minimum L∞ norm of any point in P̂ = conv
(
1
R
e1, . . . ,

1
R
ed,

1
d
1d

)
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is 1
Rd
≥ 1

d2
. Since 1 ∈ C(t) for all t, the algorithm increases the coordinate z(t) at all times

t, and therefore by induction on t, we get ∥z(t)∥∞ = z
(t)
1 . Thus,

∑
i∈C(t) z

(t)
i ≥ z

(t)
1 ≥ 1

d2
.

Further, η0 ≤
√

e ln d
T
≤ 1

2e2
for all T ≥ 50 ln d. Therefore, by Lemma E.4, we have

Bhd
(z(t)∥y(t)) ≤ 2η20

∑
i∈C(t)

z
(t)
i .

By Lemma E.5, for β = ln(dT ), we then have that

Pr

(
Bhd

(z(t)∥y(t)) ≥ (2η20) · (4 ln dT )max

{
z
(t)
1 ,

S

d
∥z(t)∥1

})
≤ 1

dT
.

(Second part) We have η20 ≤ e ln d
T
≤ 4 ln(dT )

T
. Further, since P̂ = conv

(
1
R
e1, . . . ,

1
R
ed,

1
d
1d

)
,

we have (1) z(t)1 ≤ 1
R

, and (2) S
d
∥z(t)∥1 ≤ S

d
·1 = d1/3

d
≤ 1

d1/3
= 1

R
, so that max

{
z
(t)
1 , S

d
∥z(t)∥1

}
≤ 1

R
. Therefore, with probability ≥ 1 − 1

dT
, Bhd

(z(t)∥y(t)) ≤ 32 ln2(dT )
RT

= K
4R

. Taking a

union bound over all t ∈ [T ] implies the result.

E.4 Proof of Theorem 7.6

Let ℓ∗ = argminℓ∈[N ]

∑
t∈[T ] f

(t)(X
(t)
ℓ ), and denote f (t)

ℓ∗ = f
(t)
∗ for all t. Define weightsw(t)

ℓ

inductively as follows: w(1)
ℓ = 1

N
for allN , andw(t+1)

ℓ = w
(t)
ℓ exp

(
− ε(f (t)(X

(t)
ℓ )−f (t)(X

(t)
∗ ))

ρ

)
for all t, where X(t)

ℓ is the iterate of the ℓth mirror map at time t.

Define potential at time t as ϕ(t) =
∑

ℓ∈[N ]w
(t)
ℓ = ∥w(t)∥1. Note that p(t)ℓ ∝ w

(t)
ℓ and

therefore p(t)ℓ =
w

(t)
ℓ

∥w(t)∥1
=

w
(t)
ℓ

ϕ(t) . Then,

ϕ(t+1) =
∑
ℓ∈[N ]

w
(t+1)
ℓ =

∑
ℓ∈[N ]

w
(t)
ℓ exp

(
−ε(f

(t)(X
(t)
ℓ )− f (t)(X

(t)
∗ ))

ρ

)
.

Further, f (t)(X
(t)
ℓ )−f (t)(X

(t)
∗ ) ≤ ρ by definition and ε ∈ [0, 1]. Since exp(u) ≤ 1+u+u2
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for all u ∈ [−1, 1], we get

ϕ(t+1) ≤
∑
ℓ∈[N ]

w
(t)
ℓ

(
1− ε(f (t)(X

(t)
ℓ )− f (t)(X

(t)
∗ ))

ρ
+
ε2(f (t)(X

(t)
ℓ )− f (t)(X

(t)
∗ ))2

ρ2

)

≤
∑
ℓ∈[N ]

w
(t)
ℓ

(
1− ε(f (t)(X

(t)
ℓ )− f (t)(X

(t)
∗ ))

ρ
+ ε2

)

= (1 + ε2)ϕ(t) − ε

ρ

∑
ℓ

w
(t)
ℓ (f (t)(X

(t)
ℓ )− f (t)(X(t)

∗ ))

= (1 + ε2)ϕ(t) − εϕ(t)

ρ

∑
ℓ

p
(t)
ℓ (f (t)(X

(t)
ℓ )− f (t)(X(t)

∗ )).

Recall that the algorithm plays x(t) =
∑

ℓ p
(t)
ℓ X

(t)
ℓ . Since f (t) is convex, f (t)(x(t)) ≤∑

ℓ p
(t)
ℓ f

(t)(X
(t)
ℓ ). Therefore,

ϕ(t+1) ≤ ϕ(t)

(
(1 + ε2)− ε(f (t)(x(t))− f (t)(X

(t)
∗ ))

ρ

)
.

Using 1 + u ≤ exp(u) for all u ∈ R,

ϕ(t+1) ≤ ϕ(t) exp

(
ε2 − ε(f (t)(x(t))− f (t)(X

(t)
∗ ))

ρ

)
.

Therefore,

ϕ(T+1)

ϕ(1)
≤ exp

(
Tε2 −

ε
∑

t∈[T ](f
(t)(x(t))− f (t)(X

(t)
∗ ))

ρ

)

= exp

(
Tε2 − ε(regret(T )− regret∗(T ))

ρ

)
.

Note that ϕ(1) = 1 and ϕ(T+1) ≥ w
(T+1)
∗ = w

(1)
∗ = 1

N
, so that − lnN ≤ Tε2 −

regret(T )−regret∗(T )
ρ

. Rearranging,

regret(T ) ≤ regret∗(T ) + ρ

(
lnN

ε
+ Tε

)
.
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By assumption, T ≥ lnN . Choose ε =
√

lnN
T
≤ 1 to get

regret(T ) ≤ regret∗(T ) + 2ρ
√
lnN
√
T .
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